MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pc0 Structured version   Unicode version

Theorem pc0 14226
Description: The value of the prime power function at zero. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pc0  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )

Proof of Theorem pc0
Dummy variables  x  y  n  p  r 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 10864 . . 3  |-  0  e.  ZZ
2 zq 11177 . . 3  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
31, 2ax-mp 5 . 2  |-  0  e.  QQ
4 iftrue 3938 . . . 4  |-  ( r  =  0  ->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )  = +oo )
54adantl 466 . . 3  |-  ( ( p  =  P  /\  r  =  0 )  ->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
r  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n )  ||  y } ,  RR ,  <  ) ) ) ) )  = +oo )
6 df-pc 14209 . . 3  |-  pCnt  =  ( p  e.  Prime ,  r  e.  QQ  |->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) ) ) ) )
7 pnfex 11311 . . 3  |- +oo  e.  _V
85, 6, 7ovmpt2a 6408 . 2  |-  ( ( P  e.  Prime  /\  0  e.  QQ )  ->  ( P  pCnt  0 )  = +oo )
93, 8mpan2 671 1  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   E.wrex 2808   {crab 2811   ifcif 3932   class class class wbr 4440   iotacio 5540  (class class class)co 6275   supcsup 7889   RRcr 9480   0cc0 9481   +oocpnf 9614    < clt 9617    - cmin 9794    / cdiv 10195   NNcn 10525   NN0cn0 10784   ZZcz 10853   QQcq 11171   ^cexp 12122    || cdivides 13836   Primecprime 14065    pCnt cpc 14208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-z 10854  df-q 11172  df-pc 14209
This theorem is referenced by:  pcxcl  14232  pcge0  14233  pcdvdsb  14240  pcgcd1  14248  pc2dvds  14250  pcaddlem  14255  pcadd  14256
  Copyright terms: Public domain W3C validator