Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  partfun Structured version   Unicode version

Theorem partfun 27188
 Description: Rewrite a function defined by parts, using a mapping and an if construct, into a union of functions on disjoint domains. (Contributed by Thierry Arnoux, 30-Mar-2017.)
Assertion
Ref Expression
partfun

Proof of Theorem partfun
StepHypRef Expression
1 mptun 5710 . 2
2 inundif 3905 . . 3
3 eqid 2467 . . 3
42, 3mpteq12i 4531 . 2
5 inss2 3719 . . . . . 6
65sseli 3500 . . . . 5
7 iftrue 3945 . . . . 5
86, 7syl 16 . . . 4
98mpteq2ia 4529 . . 3
10 eldifn 3627 . . . . 5
11 iffalse 3948 . . . . 5
1210, 11syl 16 . . . 4
1312mpteq2ia 4529 . . 3
149, 13uneq12i 3656 . 2
151, 4, 143eqtr3i 2504 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wceq 1379   wcel 1767   cdif 3473   cun 3474   cin 3475  cif 3939   cmpt 4505 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-if 3940  df-opab 4506  df-mpt 4507 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator