Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  partfun Structured version   Unicode version

Theorem partfun 28274
 Description: Rewrite a function defined by parts, using a mapping and an if construct, into a union of functions on disjoint domains. (Contributed by Thierry Arnoux, 30-Mar-2017.)
Assertion
Ref Expression
partfun

Proof of Theorem partfun
StepHypRef Expression
1 mptun 5725 . 2
2 inundif 3874 . . 3
3 eqid 2423 . . 3
42, 3mpteq12i 4506 . 2
5 inss2 3684 . . . . . 6
65sseli 3461 . . . . 5
76iftrued 3918 . . . 4
87mpteq2ia 4504 . . 3
9 eldifn 3589 . . . . 5
109iffalsed 3921 . . . 4
1110mpteq2ia 4504 . . 3
128, 11uneq12i 3619 . 2
131, 4, 123eqtr3i 2460 1
 Colors of variables: wff setvar class Syntax hints:   wceq 1438   wcel 1869   cdif 3434   cun 3435   cin 3436  cif 3910   cmpt 4480 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ral 2781  df-v 3084  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-if 3911  df-opab 4481  df-mpt 4482 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator