MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicabv Structured version   Unicode version

Theorem padicabv 22894
Description: The p-adic absolute value (with arbitrary base) is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.f  |-  F  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) ) )
Assertion
Ref Expression
padicabv  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  F  e.  A )
Distinct variable groups:    x, A    x, N    x, Q    x, P
Allowed substitution hint:    F( x)

Proof of Theorem padicabv
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qabsabv.a . . 3  |-  A  =  (AbsVal `  Q )
21a1i 11 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  A  =  (AbsVal `  Q )
)
3 qrng.q . . . 4  |-  Q  =  (flds  QQ )
43qrngbas 22883 . . 3  |-  QQ  =  ( Base `  Q )
54a1i 11 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  QQ  =  ( Base `  Q
) )
6 qex 10980 . . 3  |-  QQ  e.  _V
7 cnfldadd 17838 . . . 4  |-  +  =  ( +g  ` fld )
83, 7ressplusg 14295 . . 3  |-  ( QQ  e.  _V  ->  +  =  ( +g  `  Q
) )
96, 8mp1i 12 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  +  =  ( +g  `  Q
) )
10 cnfldmul 17839 . . . 4  |-  x.  =  ( .r ` fld )
113, 10ressmulr 14306 . . 3  |-  ( QQ  e.  _V  ->  x.  =  ( .r `  Q ) )
126, 11mp1i 12 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  x.  =  ( .r `  Q ) )
133qrng0 22885 . . 3  |-  0  =  ( 0g `  Q )
1413a1i 11 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  0  =  ( 0g `  Q ) )
153qdrng 22884 . . 3  |-  Q  e.  DivRing
16 drngrng 16854 . . 3  |-  ( Q  e.  DivRing  ->  Q  e.  Ring )
1715, 16mp1i 12 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  Q  e.  Ring )
18 0red 9402 . . . 4  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  x  =  0 )  -> 
0  e.  RR )
19 ioossre 11372 . . . . . . 7  |-  ( 0 (,) 1 )  C_  RR
20 simpr 461 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  e.  ( 0 (,) 1
) )
2119, 20sseldi 3369 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  e.  RR )
2221ad2antrr 725 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  -.  x  =  0 )  ->  N  e.  RR )
23 eliooord 11370 . . . . . . . . . 10  |-  ( N  e.  ( 0 (,) 1 )  ->  (
0  <  N  /\  N  <  1 ) )
2423adantl 466 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  (
0  <  N  /\  N  <  1 ) )
2524simpld 459 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  0  <  N )
2621, 25elrpd 11040 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  e.  RR+ )
2726rpne0d 11047 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  =/=  0 )
2827ad2antrr 725 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  -.  x  =  0 )  ->  N  =/=  0
)
29 df-ne 2622 . . . . . 6  |-  ( x  =/=  0  <->  -.  x  =  0 )
30 pcqcl 13938 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  QQ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  e.  ZZ )
3130adantlr 714 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( x  e.  QQ  /\  x  =/=  0 ) )  -> 
( P  pCnt  x
)  e.  ZZ )
3231anassrs 648 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  x  =/=  0 )  ->  ( P  pCnt  x )  e.  ZZ )
3329, 32sylan2br 476 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  -.  x  =  0 )  ->  ( P  pCnt  x )  e.  ZZ )
3422, 28, 33reexpclzd 12048 . . . 4  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  -.  x  =  0 )  ->  ( N ^
( P  pCnt  x
) )  e.  RR )
3518, 34ifclda 3836 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  ->  if ( x  =  0 ,  0 ,  ( N ^
( P  pCnt  x
) ) )  e.  RR )
36 padic.f . . 3  |-  F  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) ) )
3735, 36fmptd 5882 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  F : QQ --> RR )
38 0z 10672 . . . 4  |-  0  e.  ZZ
39 zq 10974 . . . 4  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
4038, 39ax-mp 5 . . 3  |-  0  e.  QQ
41 iftrue 3812 . . . 4  |-  ( x  =  0  ->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) )  =  0 )
42 c0ex 9395 . . . 4  |-  0  e.  _V
4341, 36, 42fvmpt 5789 . . 3  |-  ( 0  e.  QQ  ->  ( F `  0 )  =  0 )
4440, 43mp1i 12 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  ( F `  0 )  =  0 )
45213ad2ant1 1009 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  N  e.  RR )
46 pcqcl 13938 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  pCnt  y )  e.  ZZ )
4746adantlr 714 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  -> 
( P  pCnt  y
)  e.  ZZ )
48473impb 1183 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  ( P  pCnt  y )  e.  ZZ )
49253ad2ant1 1009 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  0  <  N
)
50 expgt0 11912 . . . 4  |-  ( ( N  e.  RR  /\  ( P  pCnt  y )  e.  ZZ  /\  0  <  N )  ->  0  <  ( N ^ ( P  pCnt  y ) ) )
5145, 48, 49, 50syl3anc 1218 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  0  <  ( N ^ ( P  pCnt  y ) ) )
52 eqeq1 2449 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  0  <->  y  =  0 ) )
53 oveq2 6114 . . . . . . . 8  |-  ( x  =  y  ->  ( P  pCnt  x )  =  ( P  pCnt  y
) )
5453oveq2d 6122 . . . . . . 7  |-  ( x  =  y  ->  ( N ^ ( P  pCnt  x ) )  =  ( N ^ ( P 
pCnt  y ) ) )
5552, 54ifbieq2d 3829 . . . . . 6  |-  ( x  =  y  ->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) )  =  if ( y  =  0 ,  0 ,  ( N ^
( P  pCnt  y
) ) ) )
56 ovex 6131 . . . . . . 7  |-  ( N ^ ( P  pCnt  y ) )  e.  _V
5742, 56ifex 3873 . . . . . 6  |-  if ( y  =  0 ,  0 ,  ( N ^ ( P  pCnt  y ) ) )  e. 
_V
5855, 36, 57fvmpt 5789 . . . . 5  |-  ( y  e.  QQ  ->  ( F `  y )  =  if ( y  =  0 ,  0 ,  ( N ^ ( P  pCnt  y ) ) ) )
59583ad2ant2 1010 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  ( F `  y )  =  if ( y  =  0 ,  0 ,  ( N ^ ( P 
pCnt  y ) ) ) )
60 simp3 990 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  y  =/=  0
)
6160neneqd 2639 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  -.  y  = 
0 )
62 iffalse 3814 . . . . 5  |-  ( -.  y  =  0  ->  if ( y  =  0 ,  0 ,  ( N ^ ( P 
pCnt  y ) ) )  =  ( N ^ ( P  pCnt  y ) ) )
6361, 62syl 16 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  if ( y  =  0 ,  0 ,  ( N ^
( P  pCnt  y
) ) )  =  ( N ^ ( P  pCnt  y ) ) )
6459, 63eqtrd 2475 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  ( F `  y )  =  ( N ^ ( P 
pCnt  y ) ) )
6551, 64breqtrrd 4333 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  0  <  ( F `  y )
)
66 pcqmul 13935 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  ( y  x.  z
) )  =  ( ( P  pCnt  y
)  +  ( P 
pCnt  z ) ) )
67663adant1r 1211 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  ( y  x.  z ) )  =  ( ( P  pCnt  y )  +  ( P  pCnt  z ) ) )
6867oveq2d 6122 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( N ^
( P  pCnt  (
y  x.  z ) ) )  =  ( N ^ ( ( P  pCnt  y )  +  ( P  pCnt  z ) ) ) )
6921recnd 9427 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  e.  CC )
70693ad2ant1 1009 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  N  e.  CC )
71273ad2ant1 1009 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  N  =/=  0
)
72473adant3 1008 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  y )  e.  ZZ )
73 simp1l 1012 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  P  e.  Prime )
74 simp3l 1016 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  z  e.  QQ )
75 simp3r 1017 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  z  =/=  0
)
76 pcqcl 13938 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  z )  e.  ZZ )
7773, 74, 75, 76syl12anc 1216 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  z )  e.  ZZ )
78 expaddz 11923 . . . . 5  |-  ( ( ( N  e.  CC  /\  N  =/=  0 )  /\  ( ( P 
pCnt  y )  e.  ZZ  /\  ( P 
pCnt  z )  e.  ZZ ) )  -> 
( N ^ (
( P  pCnt  y
)  +  ( P 
pCnt  z ) ) )  =  ( ( N ^ ( P 
pCnt  y ) )  x.  ( N ^
( P  pCnt  z
) ) ) )
7970, 71, 72, 77, 78syl22anc 1219 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( N ^
( ( P  pCnt  y )  +  ( P 
pCnt  z ) ) )  =  ( ( N ^ ( P 
pCnt  y ) )  x.  ( N ^
( P  pCnt  z
) ) ) )
8068, 79eqtrd 2475 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( N ^
( P  pCnt  (
y  x.  z ) ) )  =  ( ( N ^ ( P  pCnt  y ) )  x.  ( N ^
( P  pCnt  z
) ) ) )
81 simp2l 1014 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  y  e.  QQ )
82 qmulcl 10986 . . . . . 6  |-  ( ( y  e.  QQ  /\  z  e.  QQ )  ->  ( y  x.  z
)  e.  QQ )
8381, 74, 82syl2anc 661 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( y  x.  z )  e.  QQ )
84 eqeq1 2449 . . . . . . 7  |-  ( x  =  ( y  x.  z )  ->  (
x  =  0  <->  (
y  x.  z )  =  0 ) )
85 oveq2 6114 . . . . . . . 8  |-  ( x  =  ( y  x.  z )  ->  ( P  pCnt  x )  =  ( P  pCnt  (
y  x.  z ) ) )
8685oveq2d 6122 . . . . . . 7  |-  ( x  =  ( y  x.  z )  ->  ( N ^ ( P  pCnt  x ) )  =  ( N ^ ( P 
pCnt  ( y  x.  z ) ) ) )
8784, 86ifbieq2d 3829 . . . . . 6  |-  ( x  =  ( y  x.  z )  ->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) )  =  if ( ( y  x.  z )  =  0 ,  0 ,  ( N ^
( P  pCnt  (
y  x.  z ) ) ) ) )
88 ovex 6131 . . . . . . 7  |-  ( N ^ ( P  pCnt  ( y  x.  z ) ) )  e.  _V
8942, 88ifex 3873 . . . . . 6  |-  if ( ( y  x.  z
)  =  0 ,  0 ,  ( N ^ ( P  pCnt  ( y  x.  z ) ) ) )  e. 
_V
9087, 36, 89fvmpt 5789 . . . . 5  |-  ( ( y  x.  z )  e.  QQ  ->  ( F `  ( y  x.  z ) )  =  if ( ( y  x.  z )  =  0 ,  0 ,  ( N ^ ( P  pCnt  ( y  x.  z ) ) ) ) )
9183, 90syl 16 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  ( y  x.  z
) )  =  if ( ( y  x.  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  x.  z ) ) ) ) )
92 qcn 10982 . . . . . . . 8  |-  ( y  e.  QQ  ->  y  e.  CC )
9381, 92syl 16 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  y  e.  CC )
94 qcn 10982 . . . . . . . 8  |-  ( z  e.  QQ  ->  z  e.  CC )
9574, 94syl 16 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  z  e.  CC )
96 simp2r 1015 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  y  =/=  0
)
9793, 95, 96, 75mulne0d 10003 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( y  x.  z )  =/=  0
)
9897neneqd 2639 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  -.  ( y  x.  z )  =  0 )
99 iffalse 3814 . . . . 5  |-  ( -.  ( y  x.  z
)  =  0  ->  if ( ( y  x.  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  x.  z ) ) ) )  =  ( N ^ ( P  pCnt  ( y  x.  z ) ) ) )
10098, 99syl 16 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  if ( ( y  x.  z )  =  0 ,  0 ,  ( N ^
( P  pCnt  (
y  x.  z ) ) ) )  =  ( N ^ ( P  pCnt  ( y  x.  z ) ) ) )
10191, 100eqtrd 2475 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  ( y  x.  z
) )  =  ( N ^ ( P 
pCnt  ( y  x.  z ) ) ) )
102643expb 1188 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  -> 
( F `  y
)  =  ( N ^ ( P  pCnt  y ) ) )
1031023adant3 1008 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  y )  =  ( N ^ ( P 
pCnt  y ) ) )
104 eqeq1 2449 . . . . . . . 8  |-  ( x  =  z  ->  (
x  =  0  <->  z  =  0 ) )
105 oveq2 6114 . . . . . . . . 9  |-  ( x  =  z  ->  ( P  pCnt  x )  =  ( P  pCnt  z
) )
106105oveq2d 6122 . . . . . . . 8  |-  ( x  =  z  ->  ( N ^ ( P  pCnt  x ) )  =  ( N ^ ( P 
pCnt  z ) ) )
107104, 106ifbieq2d 3829 . . . . . . 7  |-  ( x  =  z  ->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) )  =  if ( z  =  0 ,  0 ,  ( N ^
( P  pCnt  z
) ) ) )
108 ovex 6131 . . . . . . . 8  |-  ( N ^ ( P  pCnt  z ) )  e.  _V
10942, 108ifex 3873 . . . . . . 7  |-  if ( z  =  0 ,  0 ,  ( N ^ ( P  pCnt  z ) ) )  e. 
_V
110107, 36, 109fvmpt 5789 . . . . . 6  |-  ( z  e.  QQ  ->  ( F `  z )  =  if ( z  =  0 ,  0 ,  ( N ^ ( P  pCnt  z ) ) ) )
11174, 110syl 16 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  z )  =  if ( z  =  0 ,  0 ,  ( N ^ ( P 
pCnt  z ) ) ) )
11275neneqd 2639 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  -.  z  = 
0 )
113 iffalse 3814 . . . . . 6  |-  ( -.  z  =  0  ->  if ( z  =  0 ,  0 ,  ( N ^ ( P 
pCnt  z ) ) )  =  ( N ^ ( P  pCnt  z ) ) )
114112, 113syl 16 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  if ( z  =  0 ,  0 ,  ( N ^
( P  pCnt  z
) ) )  =  ( N ^ ( P  pCnt  z ) ) )
115111, 114eqtrd 2475 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  z )  =  ( N ^ ( P 
pCnt  z ) ) )
116103, 115oveq12d 6124 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( ( F `
 y )  x.  ( F `  z
) )  =  ( ( N ^ ( P  pCnt  y ) )  x.  ( N ^
( P  pCnt  z
) ) ) )
11780, 101, 1163eqtr4d 2485 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  ( y  x.  z
) )  =  ( ( F `  y
)  x.  ( F `
 z ) ) )
118 iftrue 3812 . . . . 5  |-  ( ( y  +  z )  =  0  ->  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  +  z ) ) ) )  =  0 )
119118breq1d 4317 . . . 4  |-  ( ( y  +  z )  =  0  ->  ( if ( ( y  +  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  +  z ) ) ) )  <_  ( ( N ^ ( P  pCnt  y ) )  +  ( N ^ ( P 
pCnt  z ) ) )  <->  0  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) ) )
120 ifnefalse 3816 . . . . . 6  |-  ( ( y  +  z )  =/=  0  ->  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  +  z ) ) ) )  =  ( N ^ ( P  pCnt  ( y  +  z ) ) ) )
121120adantl 466 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  if (
( y  +  z )  =  0 ,  0 ,  ( N ^ ( P  pCnt  ( y  +  z ) ) ) )  =  ( N ^ ( P  pCnt  ( y  +  z ) ) ) )
12272adantr 465 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  y )  e.  ZZ )
123122zred 10762 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  y )  e.  RR )
12477adantr 465 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  z )  e.  ZZ )
125124zred 10762 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  z )  e.  RR )
126 simp1 988 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) ) )
127126, 21syl 16 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  N  e.  RR )
128127ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  N  e.  RR )
12971ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  N  =/=  0 )
13073adantr 465 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  P  e.  Prime )
131 qaddcl 10984 . . . . . . . . . . . 12  |-  ( ( y  e.  QQ  /\  z  e.  QQ )  ->  ( y  +  z )  e.  QQ )
13281, 74, 131syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( y  +  z )  e.  QQ )
133132adantr 465 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( y  +  z )  e.  QQ )
134 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( y  +  z )  =/=  0 )
135 pcqcl 13938 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  (
( y  +  z )  e.  QQ  /\  ( y  +  z )  =/=  0 ) )  ->  ( P  pCnt  ( y  +  z ) )  e.  ZZ )
136130, 133, 134, 135syl12anc 1216 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  ( y  +  z ) )  e.  ZZ )
137136adantr 465 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( P  pCnt  ( y  +  z ) )  e.  ZZ )
138128, 129, 137reexpclzd 12048 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  e.  RR )
139122adantr 465 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( P  pCnt  y )  e.  ZZ )
140128, 129, 139reexpclzd 12048 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( N ^ ( P  pCnt  y ) )  e.  RR )
141126adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) ) )
142141, 21syl 16 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  N  e.  RR )
143141, 27syl 16 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  N  =/=  0 )
144142, 143, 122reexpclzd 12048 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  y ) )  e.  RR )
145142, 143, 124reexpclzd 12048 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  z ) )  e.  RR )
146144, 145readdcld 9428 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( N ^ ( P  pCnt  y ) )  +  ( N ^ ( P 
pCnt  z ) ) )  e.  RR )
147146adantr 465 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) )  e.  RR )
148130adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  P  e.  Prime )
14981ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  y  e.  QQ )
15074ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  z  e.  QQ )
151 simpr 461 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )
152148, 149, 150, 151pcadd 13966 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( P  pCnt  y )  <_ 
( P  pCnt  (
y  +  z ) ) )
153141, 26syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  N  e.  RR+ )
15424simprd 463 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  <  1 )
155141, 154syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  N  <  1 )
156153, 122, 136, 155ltexp2rd 12047 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  ( y  +  z ) )  < 
( P  pCnt  y
)  <->  ( N ^
( P  pCnt  y
) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
157156notbid 294 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( -.  ( P  pCnt  ( y  +  z ) )  <  ( P  pCnt  y )  <->  -.  ( N ^ ( P  pCnt  y ) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
158136zred 10762 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  ( y  +  z ) )  e.  RR )
159123, 158lenltd 9535 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  y )  <_ 
( P  pCnt  (
y  +  z ) )  <->  -.  ( P  pCnt  ( y  +  z ) )  <  ( P  pCnt  y ) ) )
160142, 143, 136reexpclzd 12048 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  e.  RR )
161160, 144lenltd 9535 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  y ) )  <->  -.  ( N ^ ( P  pCnt  y ) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
162157, 159, 1613bitr4d 285 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  y )  <_ 
( P  pCnt  (
y  +  z ) )  <->  ( N ^
( P  pCnt  (
y  +  z ) ) )  <_  ( N ^ ( P  pCnt  y ) ) ) )
163162biimpa 484 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  (
y  +  z ) ) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  y ) ) )
164152, 163syldan 470 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  y ) ) )
165126, 26syl 16 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  N  e.  RR+ )
166165, 77rpexpcld 12046 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( N ^
( P  pCnt  z
) )  e.  RR+ )
167166adantr 465 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  z ) )  e.  RR+ )
168167rpge0d 11046 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  0  <_  ( N ^ ( P 
pCnt  z ) ) )
169144, 145addge01d 9942 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( 0  <_  ( N ^
( P  pCnt  z
) )  <->  ( N ^ ( P  pCnt  y ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) ) )
170168, 169mpbid 210 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  y ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
171170adantr 465 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( N ^ ( P  pCnt  y ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
172138, 140, 147, 164, 171letrd 9543 . . . . . 6  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
173160adantr 465 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  e.  RR )
174145adantr 465 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( N ^ ( P  pCnt  z ) )  e.  RR )
175146adantr 465 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) )  e.  RR )
176130adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  P  e.  Prime )
17774ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  z  e.  QQ )
17881ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  y  e.  QQ )
179 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )
180176, 177, 178, 179pcadd 13966 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( P  pCnt  z )  <_ 
( P  pCnt  (
z  +  y ) ) )
18193, 95addcomd 9586 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( y  +  z )  =  ( z  +  y ) )
182181oveq2d 6122 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  ( y  +  z ) )  =  ( P 
pCnt  ( z  +  y ) ) )
183182ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( P  pCnt  ( y  +  z ) )  =  ( P  pCnt  (
z  +  y ) ) )
184180, 183breqtrrd 4333 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( P  pCnt  z )  <_ 
( P  pCnt  (
y  +  z ) ) )
185153, 124, 136, 155ltexp2rd 12047 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  ( y  +  z ) )  < 
( P  pCnt  z
)  <->  ( N ^
( P  pCnt  z
) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
186185notbid 294 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( -.  ( P  pCnt  ( y  +  z ) )  <  ( P  pCnt  z )  <->  -.  ( N ^ ( P  pCnt  z ) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
187125, 158lenltd 9535 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  z )  <_ 
( P  pCnt  (
y  +  z ) )  <->  -.  ( P  pCnt  ( y  +  z ) )  <  ( P  pCnt  z ) ) )
188160, 145lenltd 9535 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  z ) )  <->  -.  ( N ^ ( P  pCnt  z ) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
189186, 187, 1883bitr4d 285 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  z )  <_ 
( P  pCnt  (
y  +  z ) )  <->  ( N ^
( P  pCnt  (
y  +  z ) ) )  <_  ( N ^ ( P  pCnt  z ) ) ) )
190189biimpa 484 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  (
y  +  z ) ) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  z ) ) )
191184, 190syldan 470 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  z ) ) )
192165, 72rpexpcld 12046 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( N ^
( P  pCnt  y
) )  e.  RR+ )
193192adantr 465 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  y ) )  e.  RR+ )
194193rpge0d 11046 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  0  <_  ( N ^ ( P 
pCnt  y ) ) )
195145, 144addge02d 9943 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( 0  <_  ( N ^
( P  pCnt  y
) )  <->  ( N ^ ( P  pCnt  z ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) ) )
196194, 195mpbid 210 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  z ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
197196adantr 465 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( N ^ ( P  pCnt  z ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
198173, 174, 175, 191, 197letrd 9543 . . . . . 6  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
199123, 125, 172, 198lecasei 9495 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
200121, 199eqbrtrd 4327 . . . 4  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  if (
( y  +  z )  =  0 ,  0 ,  ( N ^ ( P  pCnt  ( y  +  z ) ) ) )  <_ 
( ( N ^
( P  pCnt  y
) )  +  ( N ^ ( P 
pCnt  z ) ) ) )
201192, 166rpaddcld 11057 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( ( N ^ ( P  pCnt  y ) )  +  ( N ^ ( P 
pCnt  z ) ) )  e.  RR+ )
202201rpge0d 11046 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  0  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
203119, 200, 202pm2.61ne 2701 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^
( P  pCnt  (
y  +  z ) ) ) )  <_ 
( ( N ^
( P  pCnt  y
) )  +  ( N ^ ( P 
pCnt  z ) ) ) )
204 eqeq1 2449 . . . . . 6  |-  ( x  =  ( y  +  z )  ->  (
x  =  0  <->  (
y  +  z )  =  0 ) )
205 oveq2 6114 . . . . . . 7  |-  ( x  =  ( y  +  z )  ->  ( P  pCnt  x )  =  ( P  pCnt  (
y  +  z ) ) )
206205oveq2d 6122 . . . . . 6  |-  ( x  =  ( y  +  z )  ->  ( N ^ ( P  pCnt  x ) )  =  ( N ^ ( P 
pCnt  ( y  +  z ) ) ) )
207204, 206ifbieq2d 3829 . . . . 5  |-  ( x  =  ( y  +  z )  ->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) )  =  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^
( P  pCnt  (
y  +  z ) ) ) ) )
208 ovex 6131 . . . . . 6  |-  ( N ^ ( P  pCnt  ( y  +  z ) ) )  e.  _V
20942, 208ifex 3873 . . . . 5  |-  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^ ( P  pCnt  ( y  +  z ) ) ) )  e. 
_V
210207, 36, 209fvmpt 5789 . . . 4  |-  ( ( y  +  z )  e.  QQ  ->  ( F `  ( y  +  z ) )  =  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^
( P  pCnt  (
y  +  z ) ) ) ) )
211132, 210syl 16 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  ( y  +  z ) )  =  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  +  z ) ) ) ) )
212103, 115oveq12d 6124 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( ( F `
 y )  +  ( F `  z
) )  =  ( ( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
213203, 211, 2123brtr4d 4337 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  ( y  +  z ) )  <_  (
( F `  y
)  +  ( F `
 z ) ) )
2142, 5, 9, 12, 14, 17, 37, 44, 65, 117, 213isabvd 16920 1  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  F  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2620   _Vcvv 2987   ifcif 3806   class class class wbr 4307    e. cmpt 4365   ` cfv 5433  (class class class)co 6106   CCcc 9295   RRcr 9296   0cc0 9297   1c1 9298    + caddc 9300    x. cmul 9302    < clt 9433    <_ cle 9434   ZZcz 10661   QQcq 10968   RR+crp 11006   (,)cioo 11315   ^cexp 11880   Primecprime 13778    pCnt cpc 13918   Basecbs 14189   ↾s cress 14190   +g cplusg 14253   .rcmulr 14254   0gc0g 14393   Ringcrg 16660   DivRingcdr 16847  AbsValcabv 16916  ℂfldccnfld 17833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374  ax-pre-sup 9375  ax-addf 9376  ax-mulf 9377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-om 6492  df-1st 6592  df-2nd 6593  df-tpos 6760  df-recs 6847  df-rdg 6881  df-1o 6935  df-2o 6936  df-oadd 6939  df-er 7116  df-map 7231  df-en 7326  df-dom 7327  df-sdom 7328  df-fin 7329  df-sup 7706  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-div 10009  df-nn 10338  df-2 10395  df-3 10396  df-4 10397  df-5 10398  df-6 10399  df-7 10400  df-8 10401  df-9 10402  df-10 10403  df-n0 10595  df-z 10662  df-dec 10771  df-uz 10877  df-q 10969  df-rp 11007  df-ioo 11319  df-ico 11321  df-fz 11453  df-fl 11657  df-mod 11724  df-seq 11822  df-exp 11881  df-cj 12603  df-re 12604  df-im 12605  df-sqr 12739  df-abs 12740  df-dvds 13551  df-gcd 13706  df-prm 13779  df-pc 13919  df-struct 14191  df-ndx 14192  df-slot 14193  df-base 14194  df-sets 14195  df-ress 14196  df-plusg 14266  df-mulr 14267  df-starv 14268  df-tset 14272  df-ple 14273  df-ds 14275  df-unif 14276  df-0g 14395  df-mnd 15430  df-grp 15560  df-minusg 15561  df-subg 15693  df-cmn 16294  df-mgp 16607  df-ur 16619  df-rng 16662  df-cring 16663  df-oppr 16730  df-dvdsr 16748  df-unit 16749  df-invr 16779  df-dvr 16790  df-drng 16849  df-subrg 16878  df-abv 16917  df-cnfld 17834
This theorem is referenced by:  padicabvf  22895  padicabvcxp  22896
  Copyright terms: Public domain W3C validator