MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicabv Structured version   Unicode version

Theorem padicabv 23955
Description: The p-adic absolute value (with arbitrary base) is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.f  |-  F  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) ) )
Assertion
Ref Expression
padicabv  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  F  e.  A )
Distinct variable groups:    x, A    x, N    x, Q    x, P
Allowed substitution hint:    F( x)

Proof of Theorem padicabv
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qabsabv.a . . 3  |-  A  =  (AbsVal `  Q )
21a1i 11 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  A  =  (AbsVal `  Q )
)
3 qrng.q . . . 4  |-  Q  =  (flds  QQ )
43qrngbas 23944 . . 3  |-  QQ  =  ( Base `  Q )
54a1i 11 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  QQ  =  ( Base `  Q
) )
6 qex 11135 . . 3  |-  QQ  e.  _V
7 cnfldadd 18561 . . . 4  |-  +  =  ( +g  ` fld )
83, 7ressplusg 14771 . . 3  |-  ( QQ  e.  _V  ->  +  =  ( +g  `  Q
) )
96, 8mp1i 12 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  +  =  ( +g  `  Q
) )
10 cnfldmul 18562 . . . 4  |-  x.  =  ( .r ` fld )
113, 10ressmulr 14782 . . 3  |-  ( QQ  e.  _V  ->  x.  =  ( .r `  Q ) )
126, 11mp1i 12 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  x.  =  ( .r `  Q ) )
133qrng0 23946 . . 3  |-  0  =  ( 0g `  Q )
1413a1i 11 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  0  =  ( 0g `  Q ) )
153qdrng 23945 . . 3  |-  Q  e.  DivRing
16 drngring 17539 . . 3  |-  ( Q  e.  DivRing  ->  Q  e.  Ring )
1715, 16mp1i 12 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  Q  e.  Ring )
18 0red 9530 . . . 4  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  x  =  0 )  -> 
0  e.  RR )
19 ioossre 11529 . . . . . . 7  |-  ( 0 (,) 1 )  C_  RR
20 simpr 459 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  e.  ( 0 (,) 1
) )
2119, 20sseldi 3432 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  e.  RR )
2221ad2antrr 723 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  -.  x  =  0 )  ->  N  e.  RR )
23 eliooord 11527 . . . . . . . . . 10  |-  ( N  e.  ( 0 (,) 1 )  ->  (
0  <  N  /\  N  <  1 ) )
2423adantl 464 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  (
0  <  N  /\  N  <  1 ) )
2524simpld 457 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  0  <  N )
2621, 25elrpd 11196 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  e.  RR+ )
2726rpne0d 11204 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  =/=  0 )
2827ad2antrr 723 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  -.  x  =  0 )  ->  N  =/=  0
)
29 df-ne 2593 . . . . . 6  |-  ( x  =/=  0  <->  -.  x  =  0 )
30 pcqcl 14405 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  QQ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  e.  ZZ )
3130adantlr 712 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( x  e.  QQ  /\  x  =/=  0 ) )  -> 
( P  pCnt  x
)  e.  ZZ )
3231anassrs 646 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  x  =/=  0 )  ->  ( P  pCnt  x )  e.  ZZ )
3329, 32sylan2br 474 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  -.  x  =  0 )  ->  ( P  pCnt  x )  e.  ZZ )
3422, 28, 33reexpclzd 12260 . . . 4  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  -.  x  =  0 )  ->  ( N ^
( P  pCnt  x
) )  e.  RR )
3518, 34ifclda 3906 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  ->  if ( x  =  0 ,  0 ,  ( N ^
( P  pCnt  x
) ) )  e.  RR )
36 padic.f . . 3  |-  F  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) ) )
3735, 36fmptd 5974 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  F : QQ --> RR )
38 0z 10814 . . . 4  |-  0  e.  ZZ
39 zq 11129 . . . 4  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
4038, 39ax-mp 5 . . 3  |-  0  e.  QQ
41 iftrue 3880 . . . 4  |-  ( x  =  0  ->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) )  =  0 )
42 c0ex 9523 . . . 4  |-  0  e.  _V
4341, 36, 42fvmpt 5874 . . 3  |-  ( 0  e.  QQ  ->  ( F `  0 )  =  0 )
4440, 43mp1i 12 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  ( F `  0 )  =  0 )
45213ad2ant1 1015 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  N  e.  RR )
46 pcqcl 14405 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  pCnt  y )  e.  ZZ )
4746adantlr 712 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  -> 
( P  pCnt  y
)  e.  ZZ )
48473impb 1190 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  ( P  pCnt  y )  e.  ZZ )
49253ad2ant1 1015 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  0  <  N
)
50 expgt0 12125 . . . 4  |-  ( ( N  e.  RR  /\  ( P  pCnt  y )  e.  ZZ  /\  0  <  N )  ->  0  <  ( N ^ ( P  pCnt  y ) ) )
5145, 48, 49, 50syl3anc 1226 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  0  <  ( N ^ ( P  pCnt  y ) ) )
52 eqeq1 2400 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  0  <->  y  =  0 ) )
53 oveq2 6226 . . . . . . . 8  |-  ( x  =  y  ->  ( P  pCnt  x )  =  ( P  pCnt  y
) )
5453oveq2d 6234 . . . . . . 7  |-  ( x  =  y  ->  ( N ^ ( P  pCnt  x ) )  =  ( N ^ ( P 
pCnt  y ) ) )
5552, 54ifbieq2d 3899 . . . . . 6  |-  ( x  =  y  ->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) )  =  if ( y  =  0 ,  0 ,  ( N ^
( P  pCnt  y
) ) ) )
56 ovex 6246 . . . . . . 7  |-  ( N ^ ( P  pCnt  y ) )  e.  _V
5742, 56ifex 3942 . . . . . 6  |-  if ( y  =  0 ,  0 ,  ( N ^ ( P  pCnt  y ) ) )  e. 
_V
5855, 36, 57fvmpt 5874 . . . . 5  |-  ( y  e.  QQ  ->  ( F `  y )  =  if ( y  =  0 ,  0 ,  ( N ^ ( P  pCnt  y ) ) ) )
59583ad2ant2 1016 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  ( F `  y )  =  if ( y  =  0 ,  0 ,  ( N ^ ( P 
pCnt  y ) ) ) )
60 simp3 996 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  y  =/=  0
)
6160neneqd 2598 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  -.  y  = 
0 )
6261iffalsed 3885 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  if ( y  =  0 ,  0 ,  ( N ^
( P  pCnt  y
) ) )  =  ( N ^ ( P  pCnt  y ) ) )
6359, 62eqtrd 2437 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  ( F `  y )  =  ( N ^ ( P 
pCnt  y ) ) )
6451, 63breqtrrd 4410 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  0  <  ( F `  y )
)
65 pcqmul 14402 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  ( y  x.  z
) )  =  ( ( P  pCnt  y
)  +  ( P 
pCnt  z ) ) )
66653adant1r 1219 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  ( y  x.  z ) )  =  ( ( P  pCnt  y )  +  ( P  pCnt  z ) ) )
6766oveq2d 6234 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( N ^
( P  pCnt  (
y  x.  z ) ) )  =  ( N ^ ( ( P  pCnt  y )  +  ( P  pCnt  z ) ) ) )
6821recnd 9555 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  e.  CC )
69683ad2ant1 1015 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  N  e.  CC )
70273ad2ant1 1015 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  N  =/=  0
)
71473adant3 1014 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  y )  e.  ZZ )
72 simp1l 1018 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  P  e.  Prime )
73 simp3l 1022 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  z  e.  QQ )
74 simp3r 1023 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  z  =/=  0
)
75 pcqcl 14405 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  z )  e.  ZZ )
7672, 73, 74, 75syl12anc 1224 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  z )  e.  ZZ )
77 expaddz 12136 . . . . 5  |-  ( ( ( N  e.  CC  /\  N  =/=  0 )  /\  ( ( P 
pCnt  y )  e.  ZZ  /\  ( P 
pCnt  z )  e.  ZZ ) )  -> 
( N ^ (
( P  pCnt  y
)  +  ( P 
pCnt  z ) ) )  =  ( ( N ^ ( P 
pCnt  y ) )  x.  ( N ^
( P  pCnt  z
) ) ) )
7869, 70, 71, 76, 77syl22anc 1227 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( N ^
( ( P  pCnt  y )  +  ( P 
pCnt  z ) ) )  =  ( ( N ^ ( P 
pCnt  y ) )  x.  ( N ^
( P  pCnt  z
) ) ) )
7967, 78eqtrd 2437 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( N ^
( P  pCnt  (
y  x.  z ) ) )  =  ( ( N ^ ( P  pCnt  y ) )  x.  ( N ^
( P  pCnt  z
) ) ) )
80 simp2l 1020 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  y  e.  QQ )
81 qmulcl 11141 . . . . . 6  |-  ( ( y  e.  QQ  /\  z  e.  QQ )  ->  ( y  x.  z
)  e.  QQ )
8280, 73, 81syl2anc 659 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( y  x.  z )  e.  QQ )
83 eqeq1 2400 . . . . . . 7  |-  ( x  =  ( y  x.  z )  ->  (
x  =  0  <->  (
y  x.  z )  =  0 ) )
84 oveq2 6226 . . . . . . . 8  |-  ( x  =  ( y  x.  z )  ->  ( P  pCnt  x )  =  ( P  pCnt  (
y  x.  z ) ) )
8584oveq2d 6234 . . . . . . 7  |-  ( x  =  ( y  x.  z )  ->  ( N ^ ( P  pCnt  x ) )  =  ( N ^ ( P 
pCnt  ( y  x.  z ) ) ) )
8683, 85ifbieq2d 3899 . . . . . 6  |-  ( x  =  ( y  x.  z )  ->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) )  =  if ( ( y  x.  z )  =  0 ,  0 ,  ( N ^
( P  pCnt  (
y  x.  z ) ) ) ) )
87 ovex 6246 . . . . . . 7  |-  ( N ^ ( P  pCnt  ( y  x.  z ) ) )  e.  _V
8842, 87ifex 3942 . . . . . 6  |-  if ( ( y  x.  z
)  =  0 ,  0 ,  ( N ^ ( P  pCnt  ( y  x.  z ) ) ) )  e. 
_V
8986, 36, 88fvmpt 5874 . . . . 5  |-  ( ( y  x.  z )  e.  QQ  ->  ( F `  ( y  x.  z ) )  =  if ( ( y  x.  z )  =  0 ,  0 ,  ( N ^ ( P  pCnt  ( y  x.  z ) ) ) ) )
9082, 89syl 16 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  ( y  x.  z
) )  =  if ( ( y  x.  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  x.  z ) ) ) ) )
91 qcn 11137 . . . . . . . 8  |-  ( y  e.  QQ  ->  y  e.  CC )
9280, 91syl 16 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  y  e.  CC )
93 qcn 11137 . . . . . . . 8  |-  ( z  e.  QQ  ->  z  e.  CC )
9473, 93syl 16 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  z  e.  CC )
95 simp2r 1021 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  y  =/=  0
)
9692, 94, 95, 74mulne0d 10140 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( y  x.  z )  =/=  0
)
9796neneqd 2598 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  -.  ( y  x.  z )  =  0 )
9897iffalsed 3885 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  if ( ( y  x.  z )  =  0 ,  0 ,  ( N ^
( P  pCnt  (
y  x.  z ) ) ) )  =  ( N ^ ( P  pCnt  ( y  x.  z ) ) ) )
9990, 98eqtrd 2437 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  ( y  x.  z
) )  =  ( N ^ ( P 
pCnt  ( y  x.  z ) ) ) )
100633expb 1195 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  -> 
( F `  y
)  =  ( N ^ ( P  pCnt  y ) ) )
1011003adant3 1014 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  y )  =  ( N ^ ( P 
pCnt  y ) ) )
102 eqeq1 2400 . . . . . . . 8  |-  ( x  =  z  ->  (
x  =  0  <->  z  =  0 ) )
103 oveq2 6226 . . . . . . . . 9  |-  ( x  =  z  ->  ( P  pCnt  x )  =  ( P  pCnt  z
) )
104103oveq2d 6234 . . . . . . . 8  |-  ( x  =  z  ->  ( N ^ ( P  pCnt  x ) )  =  ( N ^ ( P 
pCnt  z ) ) )
105102, 104ifbieq2d 3899 . . . . . . 7  |-  ( x  =  z  ->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) )  =  if ( z  =  0 ,  0 ,  ( N ^
( P  pCnt  z
) ) ) )
106 ovex 6246 . . . . . . . 8  |-  ( N ^ ( P  pCnt  z ) )  e.  _V
10742, 106ifex 3942 . . . . . . 7  |-  if ( z  =  0 ,  0 ,  ( N ^ ( P  pCnt  z ) ) )  e. 
_V
108105, 36, 107fvmpt 5874 . . . . . 6  |-  ( z  e.  QQ  ->  ( F `  z )  =  if ( z  =  0 ,  0 ,  ( N ^ ( P  pCnt  z ) ) ) )
10973, 108syl 16 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  z )  =  if ( z  =  0 ,  0 ,  ( N ^ ( P 
pCnt  z ) ) ) )
11074neneqd 2598 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  -.  z  = 
0 )
111110iffalsed 3885 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  if ( z  =  0 ,  0 ,  ( N ^
( P  pCnt  z
) ) )  =  ( N ^ ( P  pCnt  z ) ) )
112109, 111eqtrd 2437 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  z )  =  ( N ^ ( P 
pCnt  z ) ) )
113101, 112oveq12d 6236 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( ( F `
 y )  x.  ( F `  z
) )  =  ( ( N ^ ( P  pCnt  y ) )  x.  ( N ^
( P  pCnt  z
) ) ) )
11479, 99, 1133eqtr4d 2447 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  ( y  x.  z
) )  =  ( ( F `  y
)  x.  ( F `
 z ) ) )
115 iftrue 3880 . . . . 5  |-  ( ( y  +  z )  =  0  ->  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  +  z ) ) ) )  =  0 )
116115breq1d 4394 . . . 4  |-  ( ( y  +  z )  =  0  ->  ( if ( ( y  +  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  +  z ) ) ) )  <_  ( ( N ^ ( P  pCnt  y ) )  +  ( N ^ ( P 
pCnt  z ) ) )  <->  0  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) ) )
117 ifnefalse 3886 . . . . . 6  |-  ( ( y  +  z )  =/=  0  ->  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  +  z ) ) ) )  =  ( N ^ ( P  pCnt  ( y  +  z ) ) ) )
118117adantl 464 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  if (
( y  +  z )  =  0 ,  0 ,  ( N ^ ( P  pCnt  ( y  +  z ) ) ) )  =  ( N ^ ( P  pCnt  ( y  +  z ) ) ) )
11971adantr 463 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  y )  e.  ZZ )
120119zred 10906 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  y )  e.  RR )
12176adantr 463 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  z )  e.  ZZ )
122121zred 10906 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  z )  e.  RR )
123213ad2ant1 1015 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  N  e.  RR )
124123ad2antrr 723 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  N  e.  RR )
12570ad2antrr 723 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  N  =/=  0 )
12672adantr 463 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  P  e.  Prime )
127 qaddcl 11139 . . . . . . . . . . . 12  |-  ( ( y  e.  QQ  /\  z  e.  QQ )  ->  ( y  +  z )  e.  QQ )
12880, 73, 127syl2anc 659 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( y  +  z )  e.  QQ )
129128adantr 463 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( y  +  z )  e.  QQ )
130 simpr 459 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( y  +  z )  =/=  0 )
131 pcqcl 14405 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  (
( y  +  z )  e.  QQ  /\  ( y  +  z )  =/=  0 ) )  ->  ( P  pCnt  ( y  +  z ) )  e.  ZZ )
132126, 129, 130, 131syl12anc 1224 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  ( y  +  z ) )  e.  ZZ )
133132adantr 463 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( P  pCnt  ( y  +  z ) )  e.  ZZ )
134124, 125, 133reexpclzd 12260 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  e.  RR )
135119adantr 463 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( P  pCnt  y )  e.  ZZ )
136124, 125, 135reexpclzd 12260 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( N ^ ( P  pCnt  y ) )  e.  RR )
137 simpl1 997 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) ) )
138137, 21syl 16 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  N  e.  RR )
139137, 27syl 16 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  N  =/=  0 )
140138, 139, 119reexpclzd 12260 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  y ) )  e.  RR )
141138, 139, 121reexpclzd 12260 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  z ) )  e.  RR )
142140, 141readdcld 9556 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( N ^ ( P  pCnt  y ) )  +  ( N ^ ( P 
pCnt  z ) ) )  e.  RR )
143142adantr 463 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) )  e.  RR )
144126adantr 463 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  P  e.  Prime )
14580ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  y  e.  QQ )
14673ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  z  e.  QQ )
147 simpr 459 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )
148144, 145, 146, 147pcadd 14433 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( P  pCnt  y )  <_ 
( P  pCnt  (
y  +  z ) ) )
149137, 26syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  N  e.  RR+ )
15024simprd 461 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  <  1 )
151137, 150syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  N  <  1 )
152149, 119, 132, 151ltexp2rd 12259 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  ( y  +  z ) )  < 
( P  pCnt  y
)  <->  ( N ^
( P  pCnt  y
) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
153152notbid 292 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( -.  ( P  pCnt  ( y  +  z ) )  <  ( P  pCnt  y )  <->  -.  ( N ^ ( P  pCnt  y ) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
154132zred 10906 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  ( y  +  z ) )  e.  RR )
155120, 154lenltd 9664 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  y )  <_ 
( P  pCnt  (
y  +  z ) )  <->  -.  ( P  pCnt  ( y  +  z ) )  <  ( P  pCnt  y ) ) )
156138, 139, 132reexpclzd 12260 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  e.  RR )
157156, 140lenltd 9664 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  y ) )  <->  -.  ( N ^ ( P  pCnt  y ) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
158153, 155, 1573bitr4d 285 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  y )  <_ 
( P  pCnt  (
y  +  z ) )  <->  ( N ^
( P  pCnt  (
y  +  z ) ) )  <_  ( N ^ ( P  pCnt  y ) ) ) )
159158biimpa 482 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  (
y  +  z ) ) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  y ) ) )
160148, 159syldan 468 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  y ) ) )
161263ad2ant1 1015 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  N  e.  RR+ )
162161, 76rpexpcld 12258 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( N ^
( P  pCnt  z
) )  e.  RR+ )
163162adantr 463 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  z ) )  e.  RR+ )
164163rpge0d 11203 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  0  <_  ( N ^ ( P 
pCnt  z ) ) )
165140, 141addge01d 10079 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( 0  <_  ( N ^
( P  pCnt  z
) )  <->  ( N ^ ( P  pCnt  y ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) ) )
166164, 165mpbid 210 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  y ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
167166adantr 463 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( N ^ ( P  pCnt  y ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
168134, 136, 143, 160, 167letrd 9672 . . . . . 6  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
169156adantr 463 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  e.  RR )
170141adantr 463 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( N ^ ( P  pCnt  z ) )  e.  RR )
171142adantr 463 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) )  e.  RR )
172126adantr 463 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  P  e.  Prime )
17373ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  z  e.  QQ )
17480ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  y  e.  QQ )
175 simpr 459 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )
176172, 173, 174, 175pcadd 14433 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( P  pCnt  z )  <_ 
( P  pCnt  (
z  +  y ) ) )
17792, 94addcomd 9715 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( y  +  z )  =  ( z  +  y ) )
178177oveq2d 6234 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  ( y  +  z ) )  =  ( P 
pCnt  ( z  +  y ) ) )
179178ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( P  pCnt  ( y  +  z ) )  =  ( P  pCnt  (
z  +  y ) ) )
180176, 179breqtrrd 4410 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( P  pCnt  z )  <_ 
( P  pCnt  (
y  +  z ) ) )
181149, 121, 132, 151ltexp2rd 12259 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  ( y  +  z ) )  < 
( P  pCnt  z
)  <->  ( N ^
( P  pCnt  z
) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
182181notbid 292 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( -.  ( P  pCnt  ( y  +  z ) )  <  ( P  pCnt  z )  <->  -.  ( N ^ ( P  pCnt  z ) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
183122, 154lenltd 9664 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  z )  <_ 
( P  pCnt  (
y  +  z ) )  <->  -.  ( P  pCnt  ( y  +  z ) )  <  ( P  pCnt  z ) ) )
184156, 141lenltd 9664 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  z ) )  <->  -.  ( N ^ ( P  pCnt  z ) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
185182, 183, 1843bitr4d 285 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  z )  <_ 
( P  pCnt  (
y  +  z ) )  <->  ( N ^
( P  pCnt  (
y  +  z ) ) )  <_  ( N ^ ( P  pCnt  z ) ) ) )
186185biimpa 482 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  (
y  +  z ) ) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  z ) ) )
187180, 186syldan 468 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  z ) ) )
188161, 71rpexpcld 12258 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( N ^
( P  pCnt  y
) )  e.  RR+ )
189188adantr 463 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  y ) )  e.  RR+ )
190189rpge0d 11203 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  0  <_  ( N ^ ( P 
pCnt  y ) ) )
191141, 140addge02d 10080 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( 0  <_  ( N ^
( P  pCnt  y
) )  <->  ( N ^ ( P  pCnt  z ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) ) )
192190, 191mpbid 210 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  z ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
193192adantr 463 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( N ^ ( P  pCnt  z ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
194169, 170, 171, 187, 193letrd 9672 . . . . . 6  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
195120, 122, 168, 194lecasei 9623 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
196118, 195eqbrtrd 4404 . . . 4  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  if (
( y  +  z )  =  0 ,  0 ,  ( N ^ ( P  pCnt  ( y  +  z ) ) ) )  <_ 
( ( N ^
( P  pCnt  y
) )  +  ( N ^ ( P 
pCnt  z ) ) ) )
197188, 162rpaddcld 11214 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( ( N ^ ( P  pCnt  y ) )  +  ( N ^ ( P 
pCnt  z ) ) )  e.  RR+ )
198197rpge0d 11203 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  0  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
199116, 196, 198pm2.61ne 2711 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^
( P  pCnt  (
y  +  z ) ) ) )  <_ 
( ( N ^
( P  pCnt  y
) )  +  ( N ^ ( P 
pCnt  z ) ) ) )
200 eqeq1 2400 . . . . . 6  |-  ( x  =  ( y  +  z )  ->  (
x  =  0  <->  (
y  +  z )  =  0 ) )
201 oveq2 6226 . . . . . . 7  |-  ( x  =  ( y  +  z )  ->  ( P  pCnt  x )  =  ( P  pCnt  (
y  +  z ) ) )
202201oveq2d 6234 . . . . . 6  |-  ( x  =  ( y  +  z )  ->  ( N ^ ( P  pCnt  x ) )  =  ( N ^ ( P 
pCnt  ( y  +  z ) ) ) )
203200, 202ifbieq2d 3899 . . . . 5  |-  ( x  =  ( y  +  z )  ->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) )  =  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^
( P  pCnt  (
y  +  z ) ) ) ) )
204 ovex 6246 . . . . . 6  |-  ( N ^ ( P  pCnt  ( y  +  z ) ) )  e.  _V
20542, 204ifex 3942 . . . . 5  |-  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^ ( P  pCnt  ( y  +  z ) ) ) )  e. 
_V
206203, 36, 205fvmpt 5874 . . . 4  |-  ( ( y  +  z )  e.  QQ  ->  ( F `  ( y  +  z ) )  =  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^
( P  pCnt  (
y  +  z ) ) ) ) )
207128, 206syl 16 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  ( y  +  z ) )  =  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  +  z ) ) ) ) )
208101, 112oveq12d 6236 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( ( F `
 y )  +  ( F `  z
) )  =  ( ( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
209199, 207, 2083brtr4d 4414 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  ( y  +  z ) )  <_  (
( F `  y
)  +  ( F `
 z ) ) )
2102, 5, 9, 12, 14, 17, 37, 44, 64, 114, 209isabvd 17605 1  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  F  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1836    =/= wne 2591   _Vcvv 3051   ifcif 3874   class class class wbr 4384    |-> cmpt 4442   ` cfv 5513  (class class class)co 6218   CCcc 9423   RRcr 9424   0cc0 9425   1c1 9426    + caddc 9428    x. cmul 9430    < clt 9561    <_ cle 9562   ZZcz 10803   QQcq 11123   RR+crp 11161   (,)cioo 11472   ^cexp 12092   Primecprime 14242    pCnt cpc 14385   Basecbs 14657   ↾s cress 14658   +g cplusg 14725   .rcmulr 14726   0gc0g 14870   Ringcrg 17334   DivRingcdr 17532  AbsValcabv 17601  ℂfldccnfld 18556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-rep 4495  ax-sep 4505  ax-nul 4513  ax-pow 4560  ax-pr 4618  ax-un 6513  ax-cnex 9481  ax-resscn 9482  ax-1cn 9483  ax-icn 9484  ax-addcl 9485  ax-addrcl 9486  ax-mulcl 9487  ax-mulrcl 9488  ax-mulcom 9489  ax-addass 9490  ax-mulass 9491  ax-distr 9492  ax-i2m1 9493  ax-1ne0 9494  ax-1rid 9495  ax-rnegex 9496  ax-rrecex 9497  ax-cnre 9498  ax-pre-lttri 9499  ax-pre-lttrn 9500  ax-pre-ltadd 9501  ax-pre-mulgt0 9502  ax-pre-sup 9503  ax-addf 9504  ax-mulf 9505
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-nel 2594  df-ral 2751  df-rex 2752  df-reu 2753  df-rmo 2754  df-rab 2755  df-v 3053  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3729  df-if 3875  df-pw 3946  df-sn 3962  df-pr 3964  df-tp 3966  df-op 3968  df-uni 4181  df-int 4217  df-iun 4262  df-br 4385  df-opab 4443  df-mpt 4444  df-tr 4478  df-eprel 4722  df-id 4726  df-po 4731  df-so 4732  df-fr 4769  df-we 4771  df-ord 4812  df-on 4813  df-lim 4814  df-suc 4815  df-xp 4936  df-rel 4937  df-cnv 4938  df-co 4939  df-dm 4940  df-rn 4941  df-res 4942  df-ima 4943  df-iota 5477  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6180  df-ov 6221  df-oprab 6222  df-mpt2 6223  df-om 6622  df-1st 6721  df-2nd 6722  df-tpos 6895  df-recs 6982  df-rdg 7016  df-1o 7070  df-2o 7071  df-oadd 7074  df-er 7251  df-map 7362  df-en 7458  df-dom 7459  df-sdom 7460  df-fin 7461  df-sup 7838  df-pnf 9563  df-mnf 9564  df-xr 9565  df-ltxr 9566  df-le 9567  df-sub 9742  df-neg 9743  df-div 10146  df-nn 10475  df-2 10533  df-3 10534  df-4 10535  df-5 10536  df-6 10537  df-7 10538  df-8 10539  df-9 10540  df-10 10541  df-n0 10735  df-z 10804  df-dec 10918  df-uz 11024  df-q 11124  df-rp 11162  df-ioo 11476  df-ico 11478  df-fz 11616  df-fl 11851  df-mod 11920  df-seq 12034  df-exp 12093  df-cj 12957  df-re 12958  df-im 12959  df-sqrt 13093  df-abs 13094  df-dvds 14012  df-gcd 14170  df-prm 14243  df-pc 14386  df-struct 14659  df-ndx 14660  df-slot 14661  df-base 14662  df-sets 14663  df-ress 14664  df-plusg 14738  df-mulr 14739  df-starv 14740  df-tset 14744  df-ple 14745  df-ds 14747  df-unif 14748  df-0g 14872  df-mgm 16012  df-sgrp 16051  df-mnd 16061  df-grp 16197  df-minusg 16198  df-subg 16338  df-cmn 16940  df-mgp 17278  df-ur 17290  df-ring 17336  df-cring 17337  df-oppr 17408  df-dvdsr 17426  df-unit 17427  df-invr 17457  df-dvr 17468  df-drng 17534  df-subrg 17563  df-abv 17602  df-cnfld 18557
This theorem is referenced by:  padicabvf  23956  padicabvcxp  23957
  Copyright terms: Public domain W3C validator