MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicabv Structured version   Unicode version

Theorem padicabv 22838
Description: The p-adic absolute value (with arbitrary base) is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.f  |-  F  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) ) )
Assertion
Ref Expression
padicabv  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  F  e.  A )
Distinct variable groups:    x, A    x, N    x, Q    x, P
Allowed substitution hint:    F( x)

Proof of Theorem padicabv
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qabsabv.a . . 3  |-  A  =  (AbsVal `  Q )
21a1i 11 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  A  =  (AbsVal `  Q )
)
3 qrng.q . . . 4  |-  Q  =  (flds  QQ )
43qrngbas 22827 . . 3  |-  QQ  =  ( Base `  Q )
54a1i 11 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  QQ  =  ( Base `  Q
) )
6 qex 10961 . . 3  |-  QQ  e.  _V
7 cnfldadd 17782 . . . 4  |-  +  =  ( +g  ` fld )
83, 7ressplusg 14276 . . 3  |-  ( QQ  e.  _V  ->  +  =  ( +g  `  Q
) )
96, 8mp1i 12 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  +  =  ( +g  `  Q
) )
10 cnfldmul 17783 . . . 4  |-  x.  =  ( .r ` fld )
113, 10ressmulr 14287 . . 3  |-  ( QQ  e.  _V  ->  x.  =  ( .r `  Q ) )
126, 11mp1i 12 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  x.  =  ( .r `  Q ) )
133qrng0 22829 . . 3  |-  0  =  ( 0g `  Q )
1413a1i 11 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  0  =  ( 0g `  Q ) )
153qdrng 22828 . . 3  |-  Q  e.  DivRing
16 drngrng 16819 . . 3  |-  ( Q  e.  DivRing  ->  Q  e.  Ring )
1715, 16mp1i 12 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  Q  e.  Ring )
18 0red 9383 . . . 4  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  x  =  0 )  -> 
0  e.  RR )
19 ioossre 11353 . . . . . . 7  |-  ( 0 (,) 1 )  C_  RR
20 simpr 458 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  e.  ( 0 (,) 1
) )
2119, 20sseldi 3351 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  e.  RR )
2221ad2antrr 720 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  -.  x  =  0 )  ->  N  e.  RR )
23 eliooord 11351 . . . . . . . . . 10  |-  ( N  e.  ( 0 (,) 1 )  ->  (
0  <  N  /\  N  <  1 ) )
2423adantl 463 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  (
0  <  N  /\  N  <  1 ) )
2524simpld 456 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  0  <  N )
2621, 25elrpd 11021 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  e.  RR+ )
2726rpne0d 11028 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  =/=  0 )
2827ad2antrr 720 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  -.  x  =  0 )  ->  N  =/=  0
)
29 df-ne 2606 . . . . . 6  |-  ( x  =/=  0  <->  -.  x  =  0 )
30 pcqcl 13919 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  QQ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  e.  ZZ )
3130adantlr 709 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( x  e.  QQ  /\  x  =/=  0 ) )  -> 
( P  pCnt  x
)  e.  ZZ )
3231anassrs 643 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  x  =/=  0 )  ->  ( P  pCnt  x )  e.  ZZ )
3329, 32sylan2br 473 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  -.  x  =  0 )  ->  ( P  pCnt  x )  e.  ZZ )
3422, 28, 33reexpclzd 12029 . . . 4  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  /\  -.  x  =  0 )  ->  ( N ^
( P  pCnt  x
) )  e.  RR )
3518, 34ifclda 3818 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  x  e.  QQ )  ->  if ( x  =  0 ,  0 ,  ( N ^
( P  pCnt  x
) ) )  e.  RR )
36 padic.f . . 3  |-  F  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) ) )
3735, 36fmptd 5864 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  F : QQ --> RR )
38 0z 10653 . . . 4  |-  0  e.  ZZ
39 zq 10955 . . . 4  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
4038, 39ax-mp 5 . . 3  |-  0  e.  QQ
41 iftrue 3794 . . . 4  |-  ( x  =  0  ->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) )  =  0 )
42 c0ex 9376 . . . 4  |-  0  e.  _V
4341, 36, 42fvmpt 5771 . . 3  |-  ( 0  e.  QQ  ->  ( F `  0 )  =  0 )
4440, 43mp1i 12 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  ( F `  0 )  =  0 )
45213ad2ant1 1004 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  N  e.  RR )
46 pcqcl 13919 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  pCnt  y )  e.  ZZ )
4746adantlr 709 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  -> 
( P  pCnt  y
)  e.  ZZ )
48473impb 1178 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  ( P  pCnt  y )  e.  ZZ )
49253ad2ant1 1004 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  0  <  N
)
50 expgt0 11893 . . . 4  |-  ( ( N  e.  RR  /\  ( P  pCnt  y )  e.  ZZ  /\  0  <  N )  ->  0  <  ( N ^ ( P  pCnt  y ) ) )
5145, 48, 49, 50syl3anc 1213 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  0  <  ( N ^ ( P  pCnt  y ) ) )
52 eqeq1 2447 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  0  <->  y  =  0 ) )
53 oveq2 6098 . . . . . . . 8  |-  ( x  =  y  ->  ( P  pCnt  x )  =  ( P  pCnt  y
) )
5453oveq2d 6106 . . . . . . 7  |-  ( x  =  y  ->  ( N ^ ( P  pCnt  x ) )  =  ( N ^ ( P 
pCnt  y ) ) )
5552, 54ifbieq2d 3811 . . . . . 6  |-  ( x  =  y  ->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) )  =  if ( y  =  0 ,  0 ,  ( N ^
( P  pCnt  y
) ) ) )
56 ovex 6115 . . . . . . 7  |-  ( N ^ ( P  pCnt  y ) )  e.  _V
5742, 56ifex 3855 . . . . . 6  |-  if ( y  =  0 ,  0 ,  ( N ^ ( P  pCnt  y ) ) )  e. 
_V
5855, 36, 57fvmpt 5771 . . . . 5  |-  ( y  e.  QQ  ->  ( F `  y )  =  if ( y  =  0 ,  0 ,  ( N ^ ( P  pCnt  y ) ) ) )
59583ad2ant2 1005 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  ( F `  y )  =  if ( y  =  0 ,  0 ,  ( N ^ ( P 
pCnt  y ) ) ) )
60 simp3 985 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  y  =/=  0
)
6160neneqd 2622 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  -.  y  = 
0 )
62 iffalse 3796 . . . . 5  |-  ( -.  y  =  0  ->  if ( y  =  0 ,  0 ,  ( N ^ ( P 
pCnt  y ) ) )  =  ( N ^ ( P  pCnt  y ) ) )
6361, 62syl 16 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  if ( y  =  0 ,  0 ,  ( N ^
( P  pCnt  y
) ) )  =  ( N ^ ( P  pCnt  y ) ) )
6459, 63eqtrd 2473 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  ( F `  y )  =  ( N ^ ( P 
pCnt  y ) ) )
6551, 64breqtrrd 4315 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  y  e.  QQ  /\  y  =/=  0 )  ->  0  <  ( F `  y )
)
66 pcqmul 13916 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  ( y  x.  z
) )  =  ( ( P  pCnt  y
)  +  ( P 
pCnt  z ) ) )
67663adant1r 1206 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  ( y  x.  z ) )  =  ( ( P  pCnt  y )  +  ( P  pCnt  z ) ) )
6867oveq2d 6106 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( N ^
( P  pCnt  (
y  x.  z ) ) )  =  ( N ^ ( ( P  pCnt  y )  +  ( P  pCnt  z ) ) ) )
6921recnd 9408 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  e.  CC )
70693ad2ant1 1004 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  N  e.  CC )
71273ad2ant1 1004 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  N  =/=  0
)
72473adant3 1003 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  y )  e.  ZZ )
73 simp1l 1007 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  P  e.  Prime )
74 simp3l 1011 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  z  e.  QQ )
75 simp3r 1012 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  z  =/=  0
)
76 pcqcl 13919 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  z )  e.  ZZ )
7773, 74, 75, 76syl12anc 1211 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  z )  e.  ZZ )
78 expaddz 11904 . . . . 5  |-  ( ( ( N  e.  CC  /\  N  =/=  0 )  /\  ( ( P 
pCnt  y )  e.  ZZ  /\  ( P 
pCnt  z )  e.  ZZ ) )  -> 
( N ^ (
( P  pCnt  y
)  +  ( P 
pCnt  z ) ) )  =  ( ( N ^ ( P 
pCnt  y ) )  x.  ( N ^
( P  pCnt  z
) ) ) )
7970, 71, 72, 77, 78syl22anc 1214 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( N ^
( ( P  pCnt  y )  +  ( P 
pCnt  z ) ) )  =  ( ( N ^ ( P 
pCnt  y ) )  x.  ( N ^
( P  pCnt  z
) ) ) )
8068, 79eqtrd 2473 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( N ^
( P  pCnt  (
y  x.  z ) ) )  =  ( ( N ^ ( P  pCnt  y ) )  x.  ( N ^
( P  pCnt  z
) ) ) )
81 simp2l 1009 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  y  e.  QQ )
82 qmulcl 10967 . . . . . 6  |-  ( ( y  e.  QQ  /\  z  e.  QQ )  ->  ( y  x.  z
)  e.  QQ )
8381, 74, 82syl2anc 656 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( y  x.  z )  e.  QQ )
84 eqeq1 2447 . . . . . . 7  |-  ( x  =  ( y  x.  z )  ->  (
x  =  0  <->  (
y  x.  z )  =  0 ) )
85 oveq2 6098 . . . . . . . 8  |-  ( x  =  ( y  x.  z )  ->  ( P  pCnt  x )  =  ( P  pCnt  (
y  x.  z ) ) )
8685oveq2d 6106 . . . . . . 7  |-  ( x  =  ( y  x.  z )  ->  ( N ^ ( P  pCnt  x ) )  =  ( N ^ ( P 
pCnt  ( y  x.  z ) ) ) )
8784, 86ifbieq2d 3811 . . . . . 6  |-  ( x  =  ( y  x.  z )  ->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) )  =  if ( ( y  x.  z )  =  0 ,  0 ,  ( N ^
( P  pCnt  (
y  x.  z ) ) ) ) )
88 ovex 6115 . . . . . . 7  |-  ( N ^ ( P  pCnt  ( y  x.  z ) ) )  e.  _V
8942, 88ifex 3855 . . . . . 6  |-  if ( ( y  x.  z
)  =  0 ,  0 ,  ( N ^ ( P  pCnt  ( y  x.  z ) ) ) )  e. 
_V
9087, 36, 89fvmpt 5771 . . . . 5  |-  ( ( y  x.  z )  e.  QQ  ->  ( F `  ( y  x.  z ) )  =  if ( ( y  x.  z )  =  0 ,  0 ,  ( N ^ ( P  pCnt  ( y  x.  z ) ) ) ) )
9183, 90syl 16 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  ( y  x.  z
) )  =  if ( ( y  x.  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  x.  z ) ) ) ) )
92 qcn 10963 . . . . . . . 8  |-  ( y  e.  QQ  ->  y  e.  CC )
9381, 92syl 16 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  y  e.  CC )
94 qcn 10963 . . . . . . . 8  |-  ( z  e.  QQ  ->  z  e.  CC )
9574, 94syl 16 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  z  e.  CC )
96 simp2r 1010 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  y  =/=  0
)
9793, 95, 96, 75mulne0d 9984 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( y  x.  z )  =/=  0
)
9897neneqd 2622 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  -.  ( y  x.  z )  =  0 )
99 iffalse 3796 . . . . 5  |-  ( -.  ( y  x.  z
)  =  0  ->  if ( ( y  x.  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  x.  z ) ) ) )  =  ( N ^ ( P  pCnt  ( y  x.  z ) ) ) )
10098, 99syl 16 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  if ( ( y  x.  z )  =  0 ,  0 ,  ( N ^
( P  pCnt  (
y  x.  z ) ) ) )  =  ( N ^ ( P  pCnt  ( y  x.  z ) ) ) )
10191, 100eqtrd 2473 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  ( y  x.  z
) )  =  ( N ^ ( P 
pCnt  ( y  x.  z ) ) ) )
102643expb 1183 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  -> 
( F `  y
)  =  ( N ^ ( P  pCnt  y ) ) )
1031023adant3 1003 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  y )  =  ( N ^ ( P 
pCnt  y ) ) )
104 eqeq1 2447 . . . . . . . 8  |-  ( x  =  z  ->  (
x  =  0  <->  z  =  0 ) )
105 oveq2 6098 . . . . . . . . 9  |-  ( x  =  z  ->  ( P  pCnt  x )  =  ( P  pCnt  z
) )
106105oveq2d 6106 . . . . . . . 8  |-  ( x  =  z  ->  ( N ^ ( P  pCnt  x ) )  =  ( N ^ ( P 
pCnt  z ) ) )
107104, 106ifbieq2d 3811 . . . . . . 7  |-  ( x  =  z  ->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) )  =  if ( z  =  0 ,  0 ,  ( N ^
( P  pCnt  z
) ) ) )
108 ovex 6115 . . . . . . . 8  |-  ( N ^ ( P  pCnt  z ) )  e.  _V
10942, 108ifex 3855 . . . . . . 7  |-  if ( z  =  0 ,  0 ,  ( N ^ ( P  pCnt  z ) ) )  e. 
_V
110107, 36, 109fvmpt 5771 . . . . . 6  |-  ( z  e.  QQ  ->  ( F `  z )  =  if ( z  =  0 ,  0 ,  ( N ^ ( P  pCnt  z ) ) ) )
11174, 110syl 16 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  z )  =  if ( z  =  0 ,  0 ,  ( N ^ ( P 
pCnt  z ) ) ) )
11275neneqd 2622 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  -.  z  = 
0 )
113 iffalse 3796 . . . . . 6  |-  ( -.  z  =  0  ->  if ( z  =  0 ,  0 ,  ( N ^ ( P 
pCnt  z ) ) )  =  ( N ^ ( P  pCnt  z ) ) )
114112, 113syl 16 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  if ( z  =  0 ,  0 ,  ( N ^
( P  pCnt  z
) ) )  =  ( N ^ ( P  pCnt  z ) ) )
115111, 114eqtrd 2473 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  z )  =  ( N ^ ( P 
pCnt  z ) ) )
116103, 115oveq12d 6108 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( ( F `
 y )  x.  ( F `  z
) )  =  ( ( N ^ ( P  pCnt  y ) )  x.  ( N ^
( P  pCnt  z
) ) ) )
11780, 101, 1163eqtr4d 2483 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  ( y  x.  z
) )  =  ( ( F `  y
)  x.  ( F `
 z ) ) )
118 iftrue 3794 . . . . 5  |-  ( ( y  +  z )  =  0  ->  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  +  z ) ) ) )  =  0 )
119118breq1d 4299 . . . 4  |-  ( ( y  +  z )  =  0  ->  ( if ( ( y  +  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  +  z ) ) ) )  <_  ( ( N ^ ( P  pCnt  y ) )  +  ( N ^ ( P 
pCnt  z ) ) )  <->  0  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) ) )
120 ifnefalse 3798 . . . . . 6  |-  ( ( y  +  z )  =/=  0  ->  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  +  z ) ) ) )  =  ( N ^ ( P  pCnt  ( y  +  z ) ) ) )
121120adantl 463 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  if (
( y  +  z )  =  0 ,  0 ,  ( N ^ ( P  pCnt  ( y  +  z ) ) ) )  =  ( N ^ ( P  pCnt  ( y  +  z ) ) ) )
12272adantr 462 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  y )  e.  ZZ )
123122zred 10743 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  y )  e.  RR )
12477adantr 462 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  z )  e.  ZZ )
125124zred 10743 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  z )  e.  RR )
126 simp1 983 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) ) )
127126, 21syl 16 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  N  e.  RR )
128127ad2antrr 720 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  N  e.  RR )
12971ad2antrr 720 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  N  =/=  0 )
13073adantr 462 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  P  e.  Prime )
131 qaddcl 10965 . . . . . . . . . . . 12  |-  ( ( y  e.  QQ  /\  z  e.  QQ )  ->  ( y  +  z )  e.  QQ )
13281, 74, 131syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( y  +  z )  e.  QQ )
133132adantr 462 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( y  +  z )  e.  QQ )
134 simpr 458 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( y  +  z )  =/=  0 )
135 pcqcl 13919 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  (
( y  +  z )  e.  QQ  /\  ( y  +  z )  =/=  0 ) )  ->  ( P  pCnt  ( y  +  z ) )  e.  ZZ )
136130, 133, 134, 135syl12anc 1211 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  ( y  +  z ) )  e.  ZZ )
137136adantr 462 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( P  pCnt  ( y  +  z ) )  e.  ZZ )
138128, 129, 137reexpclzd 12029 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  e.  RR )
139122adantr 462 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( P  pCnt  y )  e.  ZZ )
140128, 129, 139reexpclzd 12029 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( N ^ ( P  pCnt  y ) )  e.  RR )
141126adantr 462 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) ) )
142141, 21syl 16 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  N  e.  RR )
143141, 27syl 16 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  N  =/=  0 )
144142, 143, 122reexpclzd 12029 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  y ) )  e.  RR )
145142, 143, 124reexpclzd 12029 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  z ) )  e.  RR )
146144, 145readdcld 9409 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( N ^ ( P  pCnt  y ) )  +  ( N ^ ( P 
pCnt  z ) ) )  e.  RR )
147146adantr 462 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) )  e.  RR )
148130adantr 462 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  P  e.  Prime )
14981ad2antrr 720 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  y  e.  QQ )
15074ad2antrr 720 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  z  e.  QQ )
151 simpr 458 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )
152148, 149, 150, 151pcadd 13947 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( P  pCnt  y )  <_ 
( P  pCnt  (
y  +  z ) ) )
153141, 26syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  N  e.  RR+ )
15424simprd 460 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  N  <  1 )
155141, 154syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  N  <  1 )
156153, 122, 136, 155ltexp2rd 12028 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  ( y  +  z ) )  < 
( P  pCnt  y
)  <->  ( N ^
( P  pCnt  y
) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
157156notbid 294 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( -.  ( P  pCnt  ( y  +  z ) )  <  ( P  pCnt  y )  <->  -.  ( N ^ ( P  pCnt  y ) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
158136zred 10743 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( P  pCnt  ( y  +  z ) )  e.  RR )
159123, 158lenltd 9516 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  y )  <_ 
( P  pCnt  (
y  +  z ) )  <->  -.  ( P  pCnt  ( y  +  z ) )  <  ( P  pCnt  y ) ) )
160142, 143, 136reexpclzd 12029 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  e.  RR )
161160, 144lenltd 9516 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  y ) )  <->  -.  ( N ^ ( P  pCnt  y ) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
162157, 159, 1613bitr4d 285 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  y )  <_ 
( P  pCnt  (
y  +  z ) )  <->  ( N ^
( P  pCnt  (
y  +  z ) ) )  <_  ( N ^ ( P  pCnt  y ) ) ) )
163162biimpa 481 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  (
y  +  z ) ) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  y ) ) )
164152, 163syldan 467 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  y ) ) )
165126, 26syl 16 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  N  e.  RR+ )
166165, 77rpexpcld 12027 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( N ^
( P  pCnt  z
) )  e.  RR+ )
167166adantr 462 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  z ) )  e.  RR+ )
168167rpge0d 11027 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  0  <_  ( N ^ ( P 
pCnt  z ) ) )
169144, 145addge01d 9923 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( 0  <_  ( N ^
( P  pCnt  z
) )  <->  ( N ^ ( P  pCnt  y ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) ) )
170168, 169mpbid 210 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  y ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
171170adantr 462 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( N ^ ( P  pCnt  y ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
172138, 140, 147, 164, 171letrd 9524 . . . . . 6  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  y )  <_ 
( P  pCnt  z
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
173160adantr 462 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  e.  RR )
174145adantr 462 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( N ^ ( P  pCnt  z ) )  e.  RR )
175146adantr 462 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) )  e.  RR )
176130adantr 462 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  P  e.  Prime )
17774ad2antrr 720 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  z  e.  QQ )
17881ad2antrr 720 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  y  e.  QQ )
179 simpr 458 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )
180176, 177, 178, 179pcadd 13947 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( P  pCnt  z )  <_ 
( P  pCnt  (
z  +  y ) ) )
18193, 95addcomd 9567 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( y  +  z )  =  ( z  +  y ) )
182181oveq2d 6106 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( P  pCnt  ( y  +  z ) )  =  ( P 
pCnt  ( z  +  y ) ) )
183182ad2antrr 720 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( P  pCnt  ( y  +  z ) )  =  ( P  pCnt  (
z  +  y ) ) )
184180, 183breqtrrd 4315 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( P  pCnt  z )  <_ 
( P  pCnt  (
y  +  z ) ) )
185153, 124, 136, 155ltexp2rd 12028 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  ( y  +  z ) )  < 
( P  pCnt  z
)  <->  ( N ^
( P  pCnt  z
) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
186185notbid 294 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( -.  ( P  pCnt  ( y  +  z ) )  <  ( P  pCnt  z )  <->  -.  ( N ^ ( P  pCnt  z ) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
187125, 158lenltd 9516 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  z )  <_ 
( P  pCnt  (
y  +  z ) )  <->  -.  ( P  pCnt  ( y  +  z ) )  <  ( P  pCnt  z ) ) )
188160, 145lenltd 9516 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  z ) )  <->  -.  ( N ^ ( P  pCnt  z ) )  <  ( N ^ ( P  pCnt  ( y  +  z ) ) ) ) )
189186, 187, 1883bitr4d 285 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( ( P  pCnt  z )  <_ 
( P  pCnt  (
y  +  z ) )  <->  ( N ^
( P  pCnt  (
y  +  z ) ) )  <_  ( N ^ ( P  pCnt  z ) ) ) )
190189biimpa 481 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  (
y  +  z ) ) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  z ) ) )
191184, 190syldan 467 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  ( N ^ ( P  pCnt  z ) ) )
192165, 72rpexpcld 12027 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( N ^
( P  pCnt  y
) )  e.  RR+ )
193192adantr 462 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  y ) )  e.  RR+ )
194193rpge0d 11027 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  0  <_  ( N ^ ( P 
pCnt  y ) ) )
195145, 144addge02d 9924 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( 0  <_  ( N ^
( P  pCnt  y
) )  <->  ( N ^ ( P  pCnt  z ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) ) )
196194, 195mpbid 210 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  z ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
197196adantr 462 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( N ^ ( P  pCnt  z ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
198173, 174, 175, 191, 197letrd 9524 . . . . . 6  |-  ( ( ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  /\  (
y  e.  QQ  /\  y  =/=  0 )  /\  ( z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0 )  /\  ( P  pCnt  z )  <_ 
( P  pCnt  y
) )  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
199123, 125, 172, 198lecasei 9476 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  ( N ^ ( P  pCnt  ( y  +  z ) ) )  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
200121, 199eqbrtrd 4309 . . . 4  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  /\  ( y  +  z )  =/=  0
)  ->  if (
( y  +  z )  =  0 ,  0 ,  ( N ^ ( P  pCnt  ( y  +  z ) ) ) )  <_ 
( ( N ^
( P  pCnt  y
) )  +  ( N ^ ( P 
pCnt  z ) ) ) )
201192, 166rpaddcld 11038 . . . . 5  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( ( N ^ ( P  pCnt  y ) )  +  ( N ^ ( P 
pCnt  z ) ) )  e.  RR+ )
202201rpge0d 11027 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  0  <_  (
( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
203119, 200, 202pm2.61ne 2684 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^
( P  pCnt  (
y  +  z ) ) ) )  <_ 
( ( N ^
( P  pCnt  y
) )  +  ( N ^ ( P 
pCnt  z ) ) ) )
204 eqeq1 2447 . . . . . 6  |-  ( x  =  ( y  +  z )  ->  (
x  =  0  <->  (
y  +  z )  =  0 ) )
205 oveq2 6098 . . . . . . 7  |-  ( x  =  ( y  +  z )  ->  ( P  pCnt  x )  =  ( P  pCnt  (
y  +  z ) ) )
206205oveq2d 6106 . . . . . 6  |-  ( x  =  ( y  +  z )  ->  ( N ^ ( P  pCnt  x ) )  =  ( N ^ ( P 
pCnt  ( y  +  z ) ) ) )
207204, 206ifbieq2d 3811 . . . . 5  |-  ( x  =  ( y  +  z )  ->  if ( x  =  0 ,  0 ,  ( N ^ ( P 
pCnt  x ) ) )  =  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^
( P  pCnt  (
y  +  z ) ) ) ) )
208 ovex 6115 . . . . . 6  |-  ( N ^ ( P  pCnt  ( y  +  z ) ) )  e.  _V
20942, 208ifex 3855 . . . . 5  |-  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^ ( P  pCnt  ( y  +  z ) ) ) )  e. 
_V
210207, 36, 209fvmpt 5771 . . . 4  |-  ( ( y  +  z )  e.  QQ  ->  ( F `  ( y  +  z ) )  =  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^
( P  pCnt  (
y  +  z ) ) ) ) )
211132, 210syl 16 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  ( y  +  z ) )  =  if ( ( y  +  z )  =  0 ,  0 ,  ( N ^ ( P 
pCnt  ( y  +  z ) ) ) ) )
212103, 115oveq12d 6108 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( ( F `
 y )  +  ( F `  z
) )  =  ( ( N ^ ( P  pCnt  y ) )  +  ( N ^
( P  pCnt  z
) ) ) )
213203, 211, 2123brtr4d 4319 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1 ) )  /\  ( y  e.  QQ  /\  y  =/=  0 )  /\  (
z  e.  QQ  /\  z  =/=  0 ) )  ->  ( F `  ( y  +  z ) )  <_  (
( F `  y
)  +  ( F `
 z ) ) )
2142, 5, 9, 12, 14, 17, 37, 44, 65, 117, 213isabvd 16885 1  |-  ( ( P  e.  Prime  /\  N  e.  ( 0 (,) 1
) )  ->  F  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   _Vcvv 2970   ifcif 3788   class class class wbr 4289    e. cmpt 4347   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    < clt 9414    <_ cle 9415   ZZcz 10642   QQcq 10949   RR+crp 10987   (,)cioo 11296   ^cexp 11861   Primecprime 13759    pCnt cpc 13899   Basecbs 14170   ↾s cress 14171   +g cplusg 14234   .rcmulr 14235   0gc0g 14374   Ringcrg 16635   DivRingcdr 16812  AbsValcabv 16881  ℂfldccnfld 17777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-tpos 6744  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-ioo 11300  df-ico 11302  df-fz 11434  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-dvds 13532  df-gcd 13687  df-prm 13760  df-pc 13900  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-0g 14376  df-mnd 15411  df-grp 15538  df-minusg 15539  df-subg 15671  df-cmn 16272  df-mgp 16582  df-ur 16594  df-rng 16637  df-cring 16638  df-oppr 16705  df-dvdsr 16723  df-unit 16724  df-invr 16754  df-dvr 16765  df-drng 16814  df-subrg 16843  df-abv 16882  df-cnfld 17778
This theorem is referenced by:  padicabvf  22839  padicabvcxp  22840
  Copyright terms: Public domain W3C validator