Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddssat Structured version   Unicode version

Theorem paddssat 35278
Description: A projective subspace sum is a set of atoms. (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
padd0.a  |-  A  =  ( Atoms `  K )
padd0.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddssat  |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )

Proof of Theorem paddssat
Dummy variables  q  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . 3  |-  ( le
`  K )  =  ( le `  K
)
2 eqid 2443 . . 3  |-  ( join `  K )  =  (
join `  K )
3 padd0.a . . 3  |-  A  =  ( Atoms `  K )
4 padd0.p . . 3  |-  .+  =  ( +P `  K
)
51, 2, 3, 4paddval 35262 . 2  |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( ( X  u.  Y )  u.  {
p  e.  A  |  E. q  e.  X  E. r  e.  Y  p ( le `  K ) ( q ( join `  K
) r ) } ) )
6 unss 3663 . . . . . 6  |-  ( ( X  C_  A  /\  Y  C_  A )  <->  ( X  u.  Y )  C_  A
)
76biimpi 194 . . . . 5  |-  ( ( X  C_  A  /\  Y  C_  A )  -> 
( X  u.  Y
)  C_  A )
8 ssrab2 3570 . . . . 5  |-  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p
( le `  K
) ( q (
join `  K )
r ) }  C_  A
97, 8jctir 538 . . . 4  |-  ( ( X  C_  A  /\  Y  C_  A )  -> 
( ( X  u.  Y )  C_  A  /\  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p ( le `  K ) ( q ( join `  K
) r ) } 
C_  A ) )
10 unss 3663 . . . 4  |-  ( ( ( X  u.  Y
)  C_  A  /\  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p ( le `  K ) ( q ( join `  K
) r ) } 
C_  A )  <->  ( ( X  u.  Y )  u.  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p ( le `  K ) ( q ( join `  K
) r ) } )  C_  A )
119, 10sylib 196 . . 3  |-  ( ( X  C_  A  /\  Y  C_  A )  -> 
( ( X  u.  Y )  u.  {
p  e.  A  |  E. q  e.  X  E. r  e.  Y  p ( le `  K ) ( q ( join `  K
) r ) } )  C_  A )
12113adant1 1015 . 2  |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  (
( X  u.  Y
)  u.  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p
( le `  K
) ( q (
join `  K )
r ) } ) 
C_  A )
135, 12eqsstrd 3523 1  |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   E.wrex 2794   {crab 2797    u. cun 3459    C_ wss 3461   class class class wbr 4437   ` cfv 5578  (class class class)co 6281   lecple 14581   joincjn 15447   Atomscatm 34728   +Pcpadd 35259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-1st 6785  df-2nd 6786  df-padd 35260
This theorem is referenced by:  paddasslem8  35291  paddasslem11  35294  paddasslem12  35295  paddasslem13  35296  paddasslem16  35299  paddasslem17  35300  paddass  35302  padd4N  35304  paddclN  35306  pmodl42N  35315  pclunN  35362  paddunN  35391  pmapocjN  35394  pclfinclN  35414  osumcllem1N  35420  osumcllem2N  35421  osumcllem9N  35428  osumcllem11N  35430  osumclN  35431  pexmidlem6N  35439  pexmidlem8N  35441  pl42lem3N  35445
  Copyright terms: Public domain W3C validator