Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddss2 Structured version   Unicode version

Theorem paddss2 33825
Description: Subset law for projective subspace sum. (unss2 3638 analog.) (Contributed by NM, 7-Mar-2012.)
Hypotheses
Ref Expression
padd0.a  |-  A  =  ( Atoms `  K )
padd0.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddss2  |-  ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  ->  ( X  C_  Y  ->  ( Z  .+  X )  C_  ( Z  .+  Y ) ) )

Proof of Theorem paddss2
Dummy variables  q  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3461 . . . . . . 7  |-  ( X 
C_  Y  ->  (
p  e.  X  ->  p  e.  Y )
)
21orim2d 836 . . . . . 6  |-  ( X 
C_  Y  ->  (
( p  e.  Z  \/  p  e.  X
)  ->  ( p  e.  Z  \/  p  e.  Y ) ) )
3 ssrexv 3528 . . . . . . . 8  |-  ( X 
C_  Y  ->  ( E. r  e.  X  p ( le `  K ) ( q ( join `  K
) r )  ->  E. r  e.  Y  p ( le `  K ) ( q ( join `  K
) r ) ) )
43reximdv 2933 . . . . . . 7  |-  ( X 
C_  Y  ->  ( E. q  e.  Z  E. r  e.  X  p ( le `  K ) ( q ( join `  K
) r )  ->  E. q  e.  Z  E. r  e.  Y  p ( le `  K ) ( q ( join `  K
) r ) ) )
54anim2d 565 . . . . . 6  |-  ( X 
C_  Y  ->  (
( p  e.  A  /\  E. q  e.  Z  E. r  e.  X  p ( le `  K ) ( q ( join `  K
) r ) )  ->  ( p  e.  A  /\  E. q  e.  Z  E. r  e.  Y  p ( le `  K ) ( q ( join `  K
) r ) ) ) )
62, 5orim12d 834 . . . . 5  |-  ( X 
C_  Y  ->  (
( ( p  e.  Z  \/  p  e.  X )  \/  (
p  e.  A  /\  E. q  e.  Z  E. r  e.  X  p
( le `  K
) ( q (
join `  K )
r ) ) )  ->  ( ( p  e.  Z  \/  p  e.  Y )  \/  (
p  e.  A  /\  E. q  e.  Z  E. r  e.  Y  p
( le `  K
) ( q (
join `  K )
r ) ) ) ) )
76adantl 466 . . . 4  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  /\  X  C_  Y )  -> 
( ( ( p  e.  Z  \/  p  e.  X )  \/  (
p  e.  A  /\  E. q  e.  Z  E. r  e.  X  p
( le `  K
) ( q (
join `  K )
r ) ) )  ->  ( ( p  e.  Z  \/  p  e.  Y )  \/  (
p  e.  A  /\  E. q  e.  Z  E. r  e.  Y  p
( le `  K
) ( q (
join `  K )
r ) ) ) ) )
8 simpl1 991 . . . . 5  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  /\  X  C_  Y )  ->  K  e.  B )
9 simpl3 993 . . . . 5  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  /\  X  C_  Y )  ->  Z  C_  A )
10 sstr 3475 . . . . . . 7  |-  ( ( X  C_  Y  /\  Y  C_  A )  ->  X  C_  A )
11103ad2antr2 1154 . . . . . 6  |-  ( ( X  C_  Y  /\  ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A ) )  ->  X  C_  A
)
1211ancoms 453 . . . . 5  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  /\  X  C_  Y )  ->  X  C_  A )
13 eqid 2454 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
14 eqid 2454 . . . . . 6  |-  ( join `  K )  =  (
join `  K )
15 padd0.a . . . . . 6  |-  A  =  ( Atoms `  K )
16 padd0.p . . . . . 6  |-  .+  =  ( +P `  K
)
1713, 14, 15, 16elpadd 33806 . . . . 5  |-  ( ( K  e.  B  /\  Z  C_  A  /\  X  C_  A )  ->  (
p  e.  ( Z 
.+  X )  <->  ( (
p  e.  Z  \/  p  e.  X )  \/  ( p  e.  A  /\  E. q  e.  Z  E. r  e.  X  p ( le `  K ) ( q ( join `  K
) r ) ) ) ) )
188, 9, 12, 17syl3anc 1219 . . . 4  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  /\  X  C_  Y )  -> 
( p  e.  ( Z  .+  X )  <-> 
( ( p  e.  Z  \/  p  e.  X )  \/  (
p  e.  A  /\  E. q  e.  Z  E. r  e.  X  p
( le `  K
) ( q (
join `  K )
r ) ) ) ) )
19 simpl2 992 . . . . 5  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  /\  X  C_  Y )  ->  Y  C_  A )
2013, 14, 15, 16elpadd 33806 . . . . 5  |-  ( ( K  e.  B  /\  Z  C_  A  /\  Y  C_  A )  ->  (
p  e.  ( Z 
.+  Y )  <->  ( (
p  e.  Z  \/  p  e.  Y )  \/  ( p  e.  A  /\  E. q  e.  Z  E. r  e.  Y  p ( le `  K ) ( q ( join `  K
) r ) ) ) ) )
218, 9, 19, 20syl3anc 1219 . . . 4  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  /\  X  C_  Y )  -> 
( p  e.  ( Z  .+  Y )  <-> 
( ( p  e.  Z  \/  p  e.  Y )  \/  (
p  e.  A  /\  E. q  e.  Z  E. r  e.  Y  p
( le `  K
) ( q (
join `  K )
r ) ) ) ) )
227, 18, 213imtr4d 268 . . 3  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  /\  X  C_  Y )  -> 
( p  e.  ( Z  .+  X )  ->  p  e.  ( Z  .+  Y ) ) )
2322ssrdv 3473 . 2  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  /\  X  C_  Y )  -> 
( Z  .+  X
)  C_  ( Z  .+  Y ) )
2423ex 434 1  |-  ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  ->  ( X  C_  Y  ->  ( Z  .+  X )  C_  ( Z  .+  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   E.wrex 2800    C_ wss 3439   class class class wbr 4403   ` cfv 5529  (class class class)co 6203   lecple 14368   joincjn 15237   Atomscatm 33271   +Pcpadd 33802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-padd 33803
This theorem is referenced by:  paddss12  33826  pmod1i  33855
  Copyright terms: Public domain W3C validator