Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddss12 Structured version   Unicode version

Theorem paddss12 33302
Description: Subset law for projective subspace sum. (unss12 3638 analog.) (Contributed by NM, 7-Mar-2012.)
Hypotheses
Ref Expression
padd0.a  |-  A  =  ( Atoms `  K )
padd0.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddss12  |-  ( ( K  e.  B  /\  Y  C_  A  /\  W  C_  A )  ->  (
( X  C_  Y  /\  Z  C_  W )  ->  ( X  .+  Z )  C_  ( Y  .+  W ) ) )

Proof of Theorem paddss12
StepHypRef Expression
1 simpl1 1008 . . . . 5  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  W  C_  A )  /\  ( X  C_  Y  /\  Z  C_  W ) )  ->  K  e.  B
)
2 simpl2 1009 . . . . 5  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  W  C_  A )  /\  ( X  C_  Y  /\  Z  C_  W ) )  ->  Y  C_  A
)
3 sstr 3472 . . . . . . . 8  |-  ( ( Z  C_  W  /\  W  C_  A )  ->  Z  C_  A )
43ancoms 454 . . . . . . 7  |-  ( ( W  C_  A  /\  Z  C_  W )  ->  Z  C_  A )
54ad2ant2l 750 . . . . . 6  |-  ( ( ( Y  C_  A  /\  W  C_  A )  /\  ( X  C_  Y  /\  Z  C_  W
) )  ->  Z  C_  A )
653adantl1 1161 . . . . 5  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  W  C_  A )  /\  ( X  C_  Y  /\  Z  C_  W ) )  ->  Z  C_  A
)
71, 2, 63jca 1185 . . . 4  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  W  C_  A )  /\  ( X  C_  Y  /\  Z  C_  W ) )  ->  ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A
) )
8 simprl 762 . . . 4  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  W  C_  A )  /\  ( X  C_  Y  /\  Z  C_  W ) )  ->  X  C_  Y
)
9 padd0.a . . . . 5  |-  A  =  ( Atoms `  K )
10 padd0.p . . . . 5  |-  .+  =  ( +P `  K
)
119, 10paddss1 33300 . . . 4  |-  ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  ->  ( X  C_  Y  ->  ( X  .+  Z )  C_  ( Y  .+  Z ) ) )
127, 8, 11sylc 62 . . 3  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  W  C_  A )  /\  ( X  C_  Y  /\  Z  C_  W ) )  ->  ( X  .+  Z )  C_  ( Y  .+  Z ) )
139, 10paddss2 33301 . . . . . 6  |-  ( ( K  e.  B  /\  W  C_  A  /\  Y  C_  A )  ->  ( Z  C_  W  ->  ( Y  .+  Z )  C_  ( Y  .+  W ) ) )
14133com23 1211 . . . . 5  |-  ( ( K  e.  B  /\  Y  C_  A  /\  W  C_  A )  ->  ( Z  C_  W  ->  ( Y  .+  Z )  C_  ( Y  .+  W ) ) )
1514imp 430 . . . 4  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  W  C_  A )  /\  Z  C_  W )  -> 
( Y  .+  Z
)  C_  ( Y  .+  W ) )
1615adantrl 720 . . 3  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  W  C_  A )  /\  ( X  C_  Y  /\  Z  C_  W ) )  ->  ( Y  .+  Z )  C_  ( Y  .+  W ) )
1712, 16sstrd 3474 . 2  |-  ( ( ( K  e.  B  /\  Y  C_  A  /\  W  C_  A )  /\  ( X  C_  Y  /\  Z  C_  W ) )  ->  ( X  .+  Z )  C_  ( Y  .+  W ) )
1817ex 435 1  |-  ( ( K  e.  B  /\  Y  C_  A  /\  W  C_  A )  ->  (
( X  C_  Y  /\  Z  C_  W )  ->  ( X  .+  Z )  C_  ( Y  .+  W ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    C_ wss 3436   ` cfv 5597  (class class class)co 6301   Atomscatm 32747   +Pcpadd 33278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4764  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-1st 6803  df-2nd 6804  df-padd 33279
This theorem is referenced by:  paddssw1  33326  paddunN  33410  pl42lem2N  33463
  Copyright terms: Public domain W3C validator