Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddidm Structured version   Unicode version

Theorem paddidm 34514
Description: Projective subspace sum is idempotent. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
paddidm.s  |-  S  =  ( PSubSp `  K )
paddidm.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddidm  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( X  .+  X
)  =  X )

Proof of Theorem paddidm
Dummy variables  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . . . 5  |-  ( ( K  e.  B  /\  X  e.  S )  ->  K  e.  B )
2 eqid 2462 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 paddidm.s . . . . . 6  |-  S  =  ( PSubSp `  K )
42, 3psubssat 34427 . . . . 5  |-  ( ( K  e.  B  /\  X  e.  S )  ->  X  C_  ( Atoms `  K ) )
5 eqid 2462 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
6 eqid 2462 . . . . . 6  |-  ( join `  K )  =  (
join `  K )
7 paddidm.p . . . . . 6  |-  .+  =  ( +P `  K
)
85, 6, 2, 7elpadd 34472 . . . . 5  |-  ( ( K  e.  B  /\  X  C_  ( Atoms `  K
)  /\  X  C_  ( Atoms `  K ) )  ->  ( p  e.  ( X  .+  X
)  <->  ( ( p  e.  X  \/  p  e.  X )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  X  E. r  e.  X  p
( le `  K
) ( q (
join `  K )
r ) ) ) ) )
91, 4, 4, 8syl3anc 1223 . . . 4  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( p  e.  ( X  .+  X )  <-> 
( ( p  e.  X  \/  p  e.  X )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  X  E. r  e.  X  p
( le `  K
) ( q (
join `  K )
r ) ) ) ) )
10 pm1.2 513 . . . . . 6  |-  ( ( p  e.  X  \/  p  e.  X )  ->  p  e.  X )
1110a1i 11 . . . . 5  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( ( p  e.  X  \/  p  e.  X )  ->  p  e.  X ) )
125, 6, 2, 3psubspi 34420 . . . . . . 7  |-  ( ( ( K  e.  B  /\  X  e.  S  /\  p  e.  ( Atoms `  K ) )  /\  E. q  e.  X  E. r  e.  X  p ( le
`  K ) ( q ( join `  K
) r ) )  ->  p  e.  X
)
13123exp1 1207 . . . . . 6  |-  ( K  e.  B  ->  ( X  e.  S  ->  ( p  e.  ( Atoms `  K )  ->  ( E. q  e.  X  E. r  e.  X  p ( le `  K ) ( q ( join `  K
) r )  ->  p  e.  X )
) ) )
1413imp4b 590 . . . . 5  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( ( p  e.  ( Atoms `  K )  /\  E. q  e.  X  E. r  e.  X  p ( le `  K ) ( q ( join `  K
) r ) )  ->  p  e.  X
) )
1511, 14jaod 380 . . . 4  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( ( ( p  e.  X  \/  p  e.  X )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  X  E. r  e.  X  p
( le `  K
) ( q (
join `  K )
r ) ) )  ->  p  e.  X
) )
169, 15sylbid 215 . . 3  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( p  e.  ( X  .+  X )  ->  p  e.  X
) )
1716ssrdv 3505 . 2  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( X  .+  X
)  C_  X )
182, 7sspadd1 34488 . . 3  |-  ( ( K  e.  B  /\  X  C_  ( Atoms `  K
)  /\  X  C_  ( Atoms `  K ) )  ->  X  C_  ( X  .+  X ) )
191, 4, 4, 18syl3anc 1223 . 2  |-  ( ( K  e.  B  /\  X  e.  S )  ->  X  C_  ( X  .+  X ) )
2017, 19eqssd 3516 1  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( X  .+  X
)  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1374    e. wcel 1762   E.wrex 2810    C_ wss 3471   class class class wbr 4442   ` cfv 5581  (class class class)co 6277   lecple 14553   joincjn 15422   Atomscatm 33937   PSubSpcpsubsp 34169   +Pcpadd 34468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6776  df-2nd 6777  df-psubsp 34176  df-padd 34469
This theorem is referenced by:  paddclN  34515  paddss  34518  pmod1i  34521
  Copyright terms: Public domain W3C validator