Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddclN Structured version   Unicode version

Theorem paddclN 33116
Description: The projective sum of two subspaces is a subspace. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddidm.s  |-  S  =  ( PSubSp `  K )
paddidm.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddclN  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y
)  e.  S )

Proof of Theorem paddclN
Dummy variables  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1005 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  K  e.  HL )
2 eqid 2429 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 paddidm.s . . . . 5  |-  S  =  ( PSubSp `  K )
42, 3psubssat 33028 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  S )  ->  X  C_  ( Atoms `  K ) )
543adant3 1025 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  X  C_  ( Atoms `  K ) )
62, 3psubssat 33028 . . . 4  |-  ( ( K  e.  HL  /\  Y  e.  S )  ->  Y  C_  ( Atoms `  K ) )
763adant2 1024 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  Y  C_  ( Atoms `  K ) )
8 paddidm.p . . . 4  |-  .+  =  ( +P `  K
)
92, 8paddssat 33088 . . 3  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
)  /\  Y  C_  ( Atoms `  K ) )  ->  ( X  .+  Y )  C_  ( Atoms `  K ) )
101, 5, 7, 9syl3anc 1264 . 2  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y
)  C_  ( Atoms `  K ) )
11 olc 385 . . . . 5  |-  ( ( p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) )  ->  ( ( p  e.  ( X  .+  Y )  \/  p  e.  ( X  .+  Y
) )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) ) ) )
12 eqid 2429 . . . . . . . 8  |-  ( le
`  K )  =  ( le `  K
)
13 eqid 2429 . . . . . . . 8  |-  ( join `  K )  =  (
join `  K )
1412, 13, 2, 8elpadd 33073 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  ( Atoms `  K
)  /\  ( X  .+  Y )  C_  ( Atoms `  K ) )  ->  ( p  e.  ( ( X  .+  Y )  .+  ( X  .+  Y ) )  <-> 
( ( p  e.  ( X  .+  Y
)  \/  p  e.  ( X  .+  Y
) )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) ) ) ) )
151, 10, 10, 14syl3anc 1264 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( p  e.  ( ( X  .+  Y
)  .+  ( X  .+  Y ) )  <->  ( (
p  e.  ( X 
.+  Y )  \/  p  e.  ( X 
.+  Y ) )  \/  ( p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r ) ) ) ) )
162, 8padd4N 33114 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )
)  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K ) ) )  ->  ( ( X 
.+  Y )  .+  ( X  .+  Y ) )  =  ( ( X  .+  X ) 
.+  ( Y  .+  Y ) ) )
171, 5, 7, 5, 7, 16syl122anc 1273 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  Y )  .+  ( X  .+  Y ) )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
183, 8paddidm 33115 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  X  e.  S )  ->  ( X  .+  X
)  =  X )
19183adant3 1025 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  X
)  =  X )
203, 8paddidm 33115 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  Y  e.  S )  ->  ( Y  .+  Y
)  =  Y )
21203adant2 1024 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( Y  .+  Y
)  =  Y )
2219, 21oveq12d 6323 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  X )  .+  ( Y  .+  Y ) )  =  ( X  .+  Y ) )
2317, 22eqtrd 2470 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  Y )  .+  ( X  .+  Y ) )  =  ( X  .+  Y ) )
2423eleq2d 2499 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( p  e.  ( ( X  .+  Y
)  .+  ( X  .+  Y ) )  <->  p  e.  ( X  .+  Y ) ) )
2515, 24bitr3d 258 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( ( p  e.  ( X  .+  Y )  \/  p  e.  ( X  .+  Y
) )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) ) )  <->  p  e.  ( X  .+  Y ) ) )
2611, 25syl5ib 222 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r ) )  ->  p  e.  ( X  .+  Y ) ) )
2726expd 437 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( p  e.  (
Atoms `  K )  -> 
( E. q  e.  ( X  .+  Y
) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r )  ->  p  e.  ( X  .+  Y ) ) ) )
2827ralrimiv 2844 . 2  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  A. p  e.  (
Atoms `  K ) ( E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r )  ->  p  e.  ( X  .+  Y ) ) )
2912, 13, 2, 3ispsubsp2 33020 . . 3  |-  ( K  e.  HL  ->  (
( X  .+  Y
)  e.  S  <->  ( ( X  .+  Y )  C_  ( Atoms `  K )  /\  A. p  e.  (
Atoms `  K ) ( E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r )  ->  p  e.  ( X  .+  Y ) ) ) ) )
30293ad2ant1 1026 . 2  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  Y )  e.  S  <->  ( ( X  .+  Y
)  C_  ( Atoms `  K )  /\  A. p  e.  ( Atoms `  K ) ( E. q  e.  ( X 
.+  Y ) E. r  e.  ( X 
.+  Y ) p ( le `  K
) ( q (
join `  K )
r )  ->  p  e.  ( X  .+  Y
) ) ) ) )
3110, 28, 30mpbir2and 930 1  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y
)  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   A.wral 2782   E.wrex 2783    C_ wss 3442   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   lecple 15159   joincjn 16140   Atomscatm 32538   HLchlt 32625   PSubSpcpsubsp 32770   +Pcpadd 33069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-preset 16124  df-poset 16142  df-plt 16155  df-lub 16171  df-glb 16172  df-join 16173  df-meet 16174  df-p0 16236  df-lat 16243  df-clat 16305  df-oposet 32451  df-ol 32453  df-oml 32454  df-covers 32541  df-ats 32542  df-atl 32573  df-cvlat 32597  df-hlat 32626  df-psubsp 32777  df-padd 33070
This theorem is referenced by:  pmodl42N  33125  pclun2N  33173
  Copyright terms: Public domain W3C validator