Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddclN Structured version   Unicode version

Theorem paddclN 34855
Description: The projective sum of two subspaces is a subspace. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddidm.s  |-  S  =  ( PSubSp `  K )
paddidm.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddclN  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y
)  e.  S )

Proof of Theorem paddclN
Dummy variables  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 996 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  K  e.  HL )
2 eqid 2467 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 paddidm.s . . . . 5  |-  S  =  ( PSubSp `  K )
42, 3psubssat 34767 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  S )  ->  X  C_  ( Atoms `  K ) )
543adant3 1016 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  X  C_  ( Atoms `  K ) )
62, 3psubssat 34767 . . . 4  |-  ( ( K  e.  HL  /\  Y  e.  S )  ->  Y  C_  ( Atoms `  K ) )
763adant2 1015 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  Y  C_  ( Atoms `  K ) )
8 paddidm.p . . . 4  |-  .+  =  ( +P `  K
)
92, 8paddssat 34827 . . 3  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
)  /\  Y  C_  ( Atoms `  K ) )  ->  ( X  .+  Y )  C_  ( Atoms `  K ) )
101, 5, 7, 9syl3anc 1228 . 2  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y
)  C_  ( Atoms `  K ) )
11 olc 384 . . . . 5  |-  ( ( p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) )  ->  ( ( p  e.  ( X  .+  Y )  \/  p  e.  ( X  .+  Y
) )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) ) ) )
12 eqid 2467 . . . . . . . 8  |-  ( le
`  K )  =  ( le `  K
)
13 eqid 2467 . . . . . . . 8  |-  ( join `  K )  =  (
join `  K )
1412, 13, 2, 8elpadd 34812 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  ( Atoms `  K
)  /\  ( X  .+  Y )  C_  ( Atoms `  K ) )  ->  ( p  e.  ( ( X  .+  Y )  .+  ( X  .+  Y ) )  <-> 
( ( p  e.  ( X  .+  Y
)  \/  p  e.  ( X  .+  Y
) )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) ) ) ) )
151, 10, 10, 14syl3anc 1228 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( p  e.  ( ( X  .+  Y
)  .+  ( X  .+  Y ) )  <->  ( (
p  e.  ( X 
.+  Y )  \/  p  e.  ( X 
.+  Y ) )  \/  ( p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r ) ) ) ) )
162, 8padd4N 34853 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )
)  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K ) ) )  ->  ( ( X 
.+  Y )  .+  ( X  .+  Y ) )  =  ( ( X  .+  X ) 
.+  ( Y  .+  Y ) ) )
171, 5, 7, 5, 7, 16syl122anc 1237 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  Y )  .+  ( X  .+  Y ) )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
183, 8paddidm 34854 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  X  e.  S )  ->  ( X  .+  X
)  =  X )
19183adant3 1016 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  X
)  =  X )
203, 8paddidm 34854 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  Y  e.  S )  ->  ( Y  .+  Y
)  =  Y )
21203adant2 1015 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( Y  .+  Y
)  =  Y )
2219, 21oveq12d 6303 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  X )  .+  ( Y  .+  Y ) )  =  ( X  .+  Y ) )
2317, 22eqtrd 2508 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  Y )  .+  ( X  .+  Y ) )  =  ( X  .+  Y ) )
2423eleq2d 2537 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( p  e.  ( ( X  .+  Y
)  .+  ( X  .+  Y ) )  <->  p  e.  ( X  .+  Y ) ) )
2515, 24bitr3d 255 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( ( p  e.  ( X  .+  Y )  \/  p  e.  ( X  .+  Y
) )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) ) )  <->  p  e.  ( X  .+  Y ) ) )
2611, 25syl5ib 219 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r ) )  ->  p  e.  ( X  .+  Y ) ) )
2726expd 436 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( p  e.  (
Atoms `  K )  -> 
( E. q  e.  ( X  .+  Y
) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r )  ->  p  e.  ( X  .+  Y ) ) ) )
2827ralrimiv 2876 . 2  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  A. p  e.  (
Atoms `  K ) ( E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r )  ->  p  e.  ( X  .+  Y ) ) )
2912, 13, 2, 3ispsubsp2 34759 . . 3  |-  ( K  e.  HL  ->  (
( X  .+  Y
)  e.  S  <->  ( ( X  .+  Y )  C_  ( Atoms `  K )  /\  A. p  e.  (
Atoms `  K ) ( E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r )  ->  p  e.  ( X  .+  Y ) ) ) ) )
30293ad2ant1 1017 . 2  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  Y )  e.  S  <->  ( ( X  .+  Y
)  C_  ( Atoms `  K )  /\  A. p  e.  ( Atoms `  K ) ( E. q  e.  ( X 
.+  Y ) E. r  e.  ( X 
.+  Y ) p ( le `  K
) ( q (
join `  K )
r )  ->  p  e.  ( X  .+  Y
) ) ) ) )
3110, 28, 30mpbir2and 920 1  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y
)  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   class class class wbr 4447   ` cfv 5588  (class class class)co 6285   lecple 14565   joincjn 15434   Atomscatm 34277   HLchlt 34364   PSubSpcpsubsp 34509   +Pcpadd 34808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-1st 6785  df-2nd 6786  df-poset 15436  df-plt 15448  df-lub 15464  df-glb 15465  df-join 15466  df-meet 15467  df-p0 15529  df-lat 15536  df-clat 15598  df-oposet 34190  df-ol 34192  df-oml 34193  df-covers 34280  df-ats 34281  df-atl 34312  df-cvlat 34336  df-hlat 34365  df-psubsp 34516  df-padd 34809
This theorem is referenced by:  pmodl42N  34864  pclun2N  34912
  Copyright terms: Public domain W3C validator