Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddclN Structured version   Unicode version

Theorem paddclN 33486
Description: The projective sum of two subspaces is a subspace. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddidm.s  |-  S  =  ( PSubSp `  K )
paddidm.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddclN  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y
)  e.  S )

Proof of Theorem paddclN
Dummy variables  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 988 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  K  e.  HL )
2 eqid 2443 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 paddidm.s . . . . 5  |-  S  =  ( PSubSp `  K )
42, 3psubssat 33398 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  S )  ->  X  C_  ( Atoms `  K ) )
543adant3 1008 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  X  C_  ( Atoms `  K ) )
62, 3psubssat 33398 . . . 4  |-  ( ( K  e.  HL  /\  Y  e.  S )  ->  Y  C_  ( Atoms `  K ) )
763adant2 1007 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  Y  C_  ( Atoms `  K ) )
8 paddidm.p . . . 4  |-  .+  =  ( +P `  K
)
92, 8paddssat 33458 . . 3  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
)  /\  Y  C_  ( Atoms `  K ) )  ->  ( X  .+  Y )  C_  ( Atoms `  K ) )
101, 5, 7, 9syl3anc 1218 . 2  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y
)  C_  ( Atoms `  K ) )
11 olc 384 . . . . 5  |-  ( ( p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) )  ->  ( ( p  e.  ( X  .+  Y )  \/  p  e.  ( X  .+  Y
) )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) ) ) )
12 eqid 2443 . . . . . . . 8  |-  ( le
`  K )  =  ( le `  K
)
13 eqid 2443 . . . . . . . 8  |-  ( join `  K )  =  (
join `  K )
1412, 13, 2, 8elpadd 33443 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  ( Atoms `  K
)  /\  ( X  .+  Y )  C_  ( Atoms `  K ) )  ->  ( p  e.  ( ( X  .+  Y )  .+  ( X  .+  Y ) )  <-> 
( ( p  e.  ( X  .+  Y
)  \/  p  e.  ( X  .+  Y
) )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) ) ) ) )
151, 10, 10, 14syl3anc 1218 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( p  e.  ( ( X  .+  Y
)  .+  ( X  .+  Y ) )  <->  ( (
p  e.  ( X 
.+  Y )  \/  p  e.  ( X 
.+  Y ) )  \/  ( p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r ) ) ) ) )
162, 8padd4N 33484 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )
)  /\  ( X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K ) ) )  ->  ( ( X 
.+  Y )  .+  ( X  .+  Y ) )  =  ( ( X  .+  X ) 
.+  ( Y  .+  Y ) ) )
171, 5, 7, 5, 7, 16syl122anc 1227 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  Y )  .+  ( X  .+  Y ) )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
183, 8paddidm 33485 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  X  e.  S )  ->  ( X  .+  X
)  =  X )
19183adant3 1008 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  X
)  =  X )
203, 8paddidm 33485 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  Y  e.  S )  ->  ( Y  .+  Y
)  =  Y )
21203adant2 1007 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( Y  .+  Y
)  =  Y )
2219, 21oveq12d 6109 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  X )  .+  ( Y  .+  Y ) )  =  ( X  .+  Y ) )
2317, 22eqtrd 2475 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  Y )  .+  ( X  .+  Y ) )  =  ( X  .+  Y ) )
2423eleq2d 2510 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( p  e.  ( ( X  .+  Y
)  .+  ( X  .+  Y ) )  <->  p  e.  ( X  .+  Y ) ) )
2515, 24bitr3d 255 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( ( p  e.  ( X  .+  Y )  \/  p  e.  ( X  .+  Y
) )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r ) ) )  <->  p  e.  ( X  .+  Y ) ) )
2611, 25syl5ib 219 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( p  e.  ( Atoms `  K )  /\  E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r ) )  ->  p  e.  ( X  .+  Y ) ) )
2726expd 436 . . 3  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( p  e.  (
Atoms `  K )  -> 
( E. q  e.  ( X  .+  Y
) E. r  e.  ( X  .+  Y
) p ( le
`  K ) ( q ( join `  K
) r )  ->  p  e.  ( X  .+  Y ) ) ) )
2827ralrimiv 2798 . 2  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  A. p  e.  (
Atoms `  K ) ( E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r )  ->  p  e.  ( X  .+  Y ) ) )
2912, 13, 2, 3ispsubsp2 33390 . . 3  |-  ( K  e.  HL  ->  (
( X  .+  Y
)  e.  S  <->  ( ( X  .+  Y )  C_  ( Atoms `  K )  /\  A. p  e.  (
Atoms `  K ) ( E. q  e.  ( X  .+  Y ) E. r  e.  ( X  .+  Y ) p ( le `  K ) ( q ( join `  K
) r )  ->  p  e.  ( X  .+  Y ) ) ) ) )
30293ad2ant1 1009 . 2  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( ( X  .+  Y )  e.  S  <->  ( ( X  .+  Y
)  C_  ( Atoms `  K )  /\  A. p  e.  ( Atoms `  K ) ( E. q  e.  ( X 
.+  Y ) E. r  e.  ( X 
.+  Y ) p ( le `  K
) ( q (
join `  K )
r )  ->  p  e.  ( X  .+  Y
) ) ) ) )
3110, 28, 30mpbir2and 913 1  |-  ( ( K  e.  HL  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y
)  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2715   E.wrex 2716    C_ wss 3328   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   lecple 14245   joincjn 15114   Atomscatm 32908   HLchlt 32995   PSubSpcpsubsp 33140   +Pcpadd 33439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-1st 6577  df-2nd 6578  df-poset 15116  df-plt 15128  df-lub 15144  df-glb 15145  df-join 15146  df-meet 15147  df-p0 15209  df-lat 15216  df-clat 15278  df-oposet 32821  df-ol 32823  df-oml 32824  df-covers 32911  df-ats 32912  df-atl 32943  df-cvlat 32967  df-hlat 32996  df-psubsp 33147  df-padd 33440
This theorem is referenced by:  pmodl42N  33495  pclun2N  33543
  Copyright terms: Public domain W3C validator