Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem9 Structured version   Unicode version

Theorem paddasslem9 33811
Description: Lemma for paddass 33821. Combine paddasslem7 33809 and paddasslem8 33810. (Contributed by NM, 9-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddasslem9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  p  e.  ( ( X  .+  Y
)  .+  Z )
)

Proof of Theorem paddasslem9
StepHypRef Expression
1 simpl1 991 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  K  e.  HL )
2 simpl2 992 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )
3 simpl3l 1043 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  p  e.  A
)
4 simpr31 1078 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  s  e.  A
)
53, 4jca 532 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( p  e.  A  /\  s  e.  A ) )
6 simpr1 994 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z ) )
7 simpr32 1079 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  s  .<_  ( x 
.\/  y ) )
8 simpl3r 1044 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  r  e.  A
)
93, 8, 43jca 1168 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( p  e.  A  /\  r  e.  A  /\  s  e.  A ) )
10 an6 1299 . . . . . 6  |-  ( ( ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
) )  <->  ( ( X  C_  A  /\  x  e.  X )  /\  ( Y  C_  A  /\  y  e.  Y )  /\  ( Z  C_  A  /\  z  e.  Z ) ) )
11 ssel2 3460 . . . . . . 7  |-  ( ( X  C_  A  /\  x  e.  X )  ->  x  e.  A )
12 ssel2 3460 . . . . . . 7  |-  ( ( Y  C_  A  /\  y  e.  Y )  ->  y  e.  A )
13 ssel2 3460 . . . . . . 7  |-  ( ( Z  C_  A  /\  z  e.  Z )  ->  z  e.  A )
1411, 12, 133anim123i 1173 . . . . . 6  |-  ( ( ( X  C_  A  /\  x  e.  X
)  /\  ( Y  C_  A  /\  y  e.  Y )  /\  ( Z  C_  A  /\  z  e.  Z ) )  -> 
( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )
1510, 14sylbi 195 . . . . 5  |-  ( ( ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
) )  ->  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)
16153ad2antl2 1151 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )
)  ->  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )
17163ad2antr1 1153 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )
18 simpr2l 1047 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  -.  r  .<_  ( x  .\/  y ) )
19 simpr2r 1048 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  r  .<_  ( y 
.\/  z ) )
2018, 19, 73jca 1168 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) ) )
21 simpr33 1080 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  s  .<_  ( p 
.\/  z ) )
22 paddasslem.l . . . 4  |-  .<_  =  ( le `  K )
23 paddasslem.j . . . 4  |-  .\/  =  ( join `  K )
24 paddasslem.a . . . 4  |-  A  =  ( Atoms `  K )
2522, 23, 24paddasslem7 33809 . . 3  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  p  .<_  ( s  .\/  z ) )
261, 9, 17, 20, 21, 25syl32anc 1227 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  p  .<_  ( s 
.\/  z ) )
27 paddasslem.p . . 3  |-  .+  =  ( +P `  K
)
2822, 23, 24, 27paddasslem8 33810 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )
291, 2, 5, 6, 7, 26, 28syl33anc 1234 1  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  p  e.  ( ( X  .+  Y
)  .+  Z )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    C_ wss 3437   class class class wbr 4401   ` cfv 5527  (class class class)co 6201   lecple 14365   joincjn 15234   Atomscatm 33247   HLchlt 33334   +Pcpadd 33778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-1st 6688  df-2nd 6689  df-poset 15236  df-plt 15248  df-lub 15264  df-glb 15265  df-join 15266  df-meet 15267  df-p0 15329  df-lat 15336  df-covers 33250  df-ats 33251  df-atl 33282  df-cvlat 33306  df-hlat 33335  df-padd 33779
This theorem is referenced by:  paddasslem10  33812
  Copyright terms: Public domain W3C validator