Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem8 Structured version   Unicode version

Theorem paddasslem8 32824
Description: Lemma for paddass 32835. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddasslem8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )

Proof of Theorem paddasslem8
StepHypRef Expression
1 simpl1 1000 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  K  e.  HL )
2 hllat 32361 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 17 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  K  e.  Lat )
4 simpl21 1075 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  X  C_  A
)
5 simpl22 1076 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  Y  C_  A
)
6 paddasslem.a . . . 4  |-  A  =  ( Atoms `  K )
7 paddasslem.p . . . 4  |-  .+  =  ( +P `  K
)
86, 7paddssat 32811 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
91, 4, 5, 8syl3anc 1230 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  ( X  .+  Y )  C_  A
)
10 simpl23 1077 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  Z  C_  A
)
11 simpr11 1081 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  x  e.  X )
12 simpr12 1082 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  y  e.  Y )
13 simpl3r 1053 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  s  e.  A )
14 simpr2 1004 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  s  .<_  ( x  .\/  y ) )
15 paddasslem.l . . . 4  |-  .<_  =  ( le `  K )
16 paddasslem.j . . . 4  |-  .\/  =  ( join `  K )
1715, 16, 6, 7elpaddri 32799 . . 3  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( x  e.  X  /\  y  e.  Y
)  /\  ( s  e.  A  /\  s  .<_  ( x  .\/  y
) ) )  -> 
s  e.  ( X 
.+  Y ) )
183, 4, 5, 11, 12, 13, 14, 17syl322anc 1258 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  s  e.  ( X  .+  Y ) )
19 simpr13 1083 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  z  e.  Z )
20 simpl3l 1052 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  p  e.  A )
21 simpr3 1005 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  p  .<_  ( s  .\/  z ) )
2215, 16, 6, 7elpaddri 32799 . 2  |-  ( ( ( K  e.  Lat  /\  ( X  .+  Y
)  C_  A  /\  Z  C_  A )  /\  ( s  e.  ( X  .+  Y )  /\  z  e.  Z
)  /\  ( p  e.  A  /\  p  .<_  ( s  .\/  z
) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
233, 9, 10, 18, 19, 20, 21, 22syl322anc 1258 1  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  s  .<_  ( x  .\/  y )  /\  p  .<_  ( s 
.\/  z ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    C_ wss 3413   class class class wbr 4394   ` cfv 5568  (class class class)co 6277   lecple 14914   joincjn 15895   Latclat 15997   Atomscatm 32261   HLchlt 32348   +Pcpadd 32792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6783  df-2nd 6784  df-lub 15926  df-join 15928  df-lat 15998  df-ats 32265  df-atl 32296  df-cvlat 32320  df-hlat 32349  df-padd 32793
This theorem is referenced by:  paddasslem9  32825
  Copyright terms: Public domain W3C validator