Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem17 Structured version   Unicode version

Theorem paddasslem17 33492
Description: Lemma for paddass 33494. The case when at least one sum argument is empty. (Contributed by NM, 12-Jan-2012.)
Hypotheses
Ref Expression
paddass.a  |-  A  =  ( Atoms `  K )
paddass.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddasslem17  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  -.  ( ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  ->  ( X  .+  ( Y  .+  Z ) )  C_  ( ( X  .+  Y )  .+  Z ) )

Proof of Theorem paddasslem17
StepHypRef Expression
1 ianor 488 . . . 4  |-  ( -.  ( ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  <->  ( -.  ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  \/  -.  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )
2 ianor 488 . . . . . 6  |-  ( -.  ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  <->  ( -.  X  =/=  (/)  \/  -.  ( Y  .+  Z )  =/=  (/) ) )
3 nne 2624 . . . . . . 7  |-  ( -.  X  =/=  (/)  <->  X  =  (/) )
4 nne 2624 . . . . . . 7  |-  ( -.  ( Y  .+  Z
)  =/=  (/)  <->  ( Y  .+  Z )  =  (/) )
53, 4orbi12i 521 . . . . . 6  |-  ( ( -.  X  =/=  (/)  \/  -.  ( Y  .+  Z )  =/=  (/) )  <->  ( X  =  (/)  \/  ( Y 
.+  Z )  =  (/) ) )
62, 5bitri 249 . . . . 5  |-  ( -.  ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  <->  ( X  =  (/)  \/  ( Y  .+  Z )  =  (/) ) )
7 ianor 488 . . . . . 6  |-  ( -.  ( Y  =/=  (/)  /\  Z  =/=  (/) )  <->  ( -.  Y  =/=  (/)  \/  -.  Z  =/=  (/) ) )
8 nne 2624 . . . . . . 7  |-  ( -.  Y  =/=  (/)  <->  Y  =  (/) )
9 nne 2624 . . . . . . 7  |-  ( -.  Z  =/=  (/)  <->  Z  =  (/) )
108, 9orbi12i 521 . . . . . 6  |-  ( ( -.  Y  =/=  (/)  \/  -.  Z  =/=  (/) )  <->  ( Y  =  (/)  \/  Z  =  (/) ) )
117, 10bitri 249 . . . . 5  |-  ( -.  ( Y  =/=  (/)  /\  Z  =/=  (/) )  <->  ( Y  =  (/)  \/  Z  =  (/) ) )
126, 11orbi12i 521 . . . 4  |-  ( ( -.  ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  \/ 
-.  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  <-> 
( ( X  =  (/)  \/  ( Y  .+  Z )  =  (/) )  \/  ( Y  =  (/)  \/  Z  =  (/) ) ) )
131, 12bitri 249 . . 3  |-  ( -.  ( ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  <->  ( ( X  =  (/)  \/  ( Y  .+  Z )  =  (/) )  \/  ( Y  =  (/)  \/  Z  =  (/) ) ) )
14 paddass.a . . . . . . . . . . 11  |-  A  =  ( Atoms `  K )
15 paddass.p . . . . . . . . . . 11  |-  .+  =  ( +P `  K
)
1614, 15paddssat 33470 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  Z  C_  A )  ->  ( Y  .+  Z )  C_  A )
17163adant3r1 1196 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Y  .+  Z
)  C_  A )
1814, 15padd02 33468 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( Y  .+  Z ) 
C_  A )  -> 
( (/)  .+  ( Y  .+  Z ) )  =  ( Y  .+  Z
) )
1917, 18syldan 470 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( (/)  .+  ( Y  .+  Z ) )  =  ( Y  .+  Z
) )
2014, 15padd02 33468 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  Y  C_  A )  -> 
( (/)  .+  Y )  =  Y )
21203ad2antr2 1154 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( (/)  .+  Y )  =  Y )
2221oveq1d 6118 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( (/)  .+  Y
)  .+  Z )  =  ( Y  .+  Z ) )
2319, 22eqtr4d 2478 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( (/)  .+  ( Y  .+  Z ) )  =  ( ( (/)  .+  Y
)  .+  Z )
)
24 oveq1 6110 . . . . . . . 8  |-  ( X  =  (/)  ->  ( X 
.+  ( Y  .+  Z ) )  =  ( (/)  .+  ( Y 
.+  Z ) ) )
25 oveq1 6110 . . . . . . . . 9  |-  ( X  =  (/)  ->  ( X 
.+  Y )  =  ( (/)  .+  Y ) )
2625oveq1d 6118 . . . . . . . 8  |-  ( X  =  (/)  ->  ( ( X  .+  Y ) 
.+  Z )  =  ( ( (/)  .+  Y
)  .+  Z )
)
2724, 26eqeq12d 2457 . . . . . . 7  |-  ( X  =  (/)  ->  ( ( X  .+  ( Y 
.+  Z ) )  =  ( ( X 
.+  Y )  .+  Z )  <->  ( (/)  .+  ( Y  .+  Z ) )  =  ( ( (/)  .+  Y )  .+  Z
) ) )
2823, 27syl5ibrcom 222 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  =  (/)  ->  ( X  .+  ( Y  .+  Z ) )  =  ( ( X 
.+  Y )  .+  Z ) ) )
29 eqimss 3420 . . . . . 6  |-  ( ( X  .+  ( Y 
.+  Z ) )  =  ( ( X 
.+  Y )  .+  Z )  ->  ( X  .+  ( Y  .+  Z ) )  C_  ( ( X  .+  Y )  .+  Z
) )
3028, 29syl6 33 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  =  (/)  ->  ( X  .+  ( Y  .+  Z ) ) 
C_  ( ( X 
.+  Y )  .+  Z ) ) )
3114, 15padd01 33467 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( X  .+  (/) )  =  X )
32313ad2antr1 1153 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  (/) )  =  X )
3314, 15sspadd1 33471 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  X  C_  ( X  .+  Y
) )
34333adant3r3 1198 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  X  C_  ( X  .+  Y ) )
35 simpl 457 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  K  e.  HL )
3614, 15paddssat 33470 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
37363adant3r3 1198 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  Y
)  C_  A )
38 simpr3 996 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  Z  C_  A )
3914, 15sspadd1 33471 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  A  /\  Z  C_  A )  ->  ( X  .+  Y )  C_  ( ( X  .+  Y )  .+  Z
) )
4035, 37, 38, 39syl3anc 1218 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  Y
)  C_  ( ( X  .+  Y )  .+  Z ) )
4134, 40sstrd 3378 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  X  C_  ( ( X 
.+  Y )  .+  Z ) )
4232, 41eqsstrd 3402 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  (/) )  C_  ( ( X  .+  Y )  .+  Z
) )
43 oveq2 6111 . . . . . . 7  |-  ( ( Y  .+  Z )  =  (/)  ->  ( X 
.+  ( Y  .+  Z ) )  =  ( X  .+  (/) ) )
4443sseq1d 3395 . . . . . 6  |-  ( ( Y  .+  Z )  =  (/)  ->  ( ( X  .+  ( Y 
.+  Z ) ) 
C_  ( ( X 
.+  Y )  .+  Z )  <->  ( X  .+  (/) )  C_  (
( X  .+  Y
)  .+  Z )
) )
4542, 44syl5ibrcom 222 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( Y  .+  Z )  =  (/)  ->  ( X  .+  ( Y  .+  Z ) ) 
C_  ( ( X 
.+  Y )  .+  Z ) ) )
4630, 45jaod 380 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  =  (/)  \/  ( Y  .+  Z )  =  (/) )  ->  ( X  .+  ( Y  .+  Z ) )  C_  ( ( X  .+  Y )  .+  Z ) ) )
4714, 15padd02 33468 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  Z  C_  A )  -> 
( (/)  .+  Z )  =  Z )
48473ad2antr3 1155 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( (/)  .+  Z )  =  Z )
4948oveq2d 6119 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( (/)  .+  Z ) )  =  ( X  .+  Z
) )
5032oveq1d 6118 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  (/) )  .+  Z )  =  ( X  .+  Z ) )
5149, 50eqtr4d 2478 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( (/)  .+  Z ) )  =  ( ( X  .+  (/) )  .+  Z ) )
52 oveq1 6110 . . . . . . . . 9  |-  ( Y  =  (/)  ->  ( Y 
.+  Z )  =  ( (/)  .+  Z ) )
5352oveq2d 6119 . . . . . . . 8  |-  ( Y  =  (/)  ->  ( X 
.+  ( Y  .+  Z ) )  =  ( X  .+  ( (/)  .+  Z ) ) )
54 oveq2 6111 . . . . . . . . 9  |-  ( Y  =  (/)  ->  ( X 
.+  Y )  =  ( X  .+  (/) ) )
5554oveq1d 6118 . . . . . . . 8  |-  ( Y  =  (/)  ->  ( ( X  .+  Y ) 
.+  Z )  =  ( ( X  .+  (/) )  .+  Z ) )
5653, 55eqeq12d 2457 . . . . . . 7  |-  ( Y  =  (/)  ->  ( ( X  .+  ( Y 
.+  Z ) )  =  ( ( X 
.+  Y )  .+  Z )  <->  ( X  .+  ( (/)  .+  Z ) )  =  ( ( X  .+  (/) )  .+  Z ) ) )
5751, 56syl5ibrcom 222 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Y  =  (/)  ->  ( X  .+  ( Y  .+  Z ) )  =  ( ( X 
.+  Y )  .+  Z ) ) )
5814, 15padd01 33467 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  Y  C_  A )  -> 
( Y  .+  (/) )  =  Y )
59583ad2antr2 1154 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Y  .+  (/) )  =  Y )
6059oveq2d 6119 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Y  .+  (/) ) )  =  ( X  .+  Y
) )
6114, 15padd01 33467 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  A )  -> 
( ( X  .+  Y )  .+  (/) )  =  ( X  .+  Y
) )
6237, 61syldan 470 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  (/) )  =  ( X  .+  Y
) )
6360, 62eqtr4d 2478 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Y  .+  (/) ) )  =  ( ( X  .+  Y )  .+  (/) ) )
64 oveq2 6111 . . . . . . . . 9  |-  ( Z  =  (/)  ->  ( Y 
.+  Z )  =  ( Y  .+  (/) ) )
6564oveq2d 6119 . . . . . . . 8  |-  ( Z  =  (/)  ->  ( X 
.+  ( Y  .+  Z ) )  =  ( X  .+  ( Y  .+  (/) ) ) )
66 oveq2 6111 . . . . . . . 8  |-  ( Z  =  (/)  ->  ( ( X  .+  Y ) 
.+  Z )  =  ( ( X  .+  Y )  .+  (/) ) )
6765, 66eqeq12d 2457 . . . . . . 7  |-  ( Z  =  (/)  ->  ( ( X  .+  ( Y 
.+  Z ) )  =  ( ( X 
.+  Y )  .+  Z )  <->  ( X  .+  ( Y  .+  (/) ) )  =  ( ( X 
.+  Y )  .+  (/) ) ) )
6863, 67syl5ibrcom 222 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Z  =  (/)  ->  ( X  .+  ( Y  .+  Z ) )  =  ( ( X 
.+  Y )  .+  Z ) ) )
6957, 68jaod 380 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( Y  =  (/)  \/  Z  =  (/) )  ->  ( X  .+  ( Y  .+  Z ) )  =  ( ( X  .+  Y ) 
.+  Z ) ) )
7069, 29syl6 33 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( Y  =  (/)  \/  Z  =  (/) )  ->  ( X  .+  ( Y  .+  Z ) )  C_  ( ( X  .+  Y )  .+  Z ) ) )
7146, 70jaod 380 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( ( X  =  (/)  \/  ( Y  .+  Z )  =  (/) )  \/  ( Y  =  (/)  \/  Z  =  (/) ) )  -> 
( X  .+  ( Y  .+  Z ) ) 
C_  ( ( X 
.+  Y )  .+  Z ) ) )
7213, 71syl5bi 217 . 2  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( -.  ( ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  ->  ( X  .+  ( Y  .+  Z ) )  C_  ( ( X  .+  Y )  .+  Z
) ) )
73723impia 1184 1  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  -.  ( ( X  =/=  (/)  /\  ( Y  .+  Z )  =/=  (/) )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) ) )  ->  ( X  .+  ( Y  .+  Z ) )  C_  ( ( X  .+  Y )  .+  Z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2618    C_ wss 3340   (/)c0 3649   ` cfv 5430  (class class class)co 6103   Atomscatm 32920   HLchlt 33007   +Pcpadd 33451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-1st 6589  df-2nd 6590  df-padd 33452
This theorem is referenced by:  paddasslem18  33493
  Copyright terms: Public domain W3C validator