Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem15 Structured version   Unicode version

Theorem paddasslem15 33797
Description: Lemma for paddass 33801. Use elpaddn0 33763 to eliminate  y and  z from paddasslem14 33796. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddasslem15  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )

Proof of Theorem paddasslem15
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr2r 1048 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  r  e.  ( Y  .+  Z ) )
2 simpl1 991 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  K  e.  HL )
3 hllat 33327 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  K  e.  Lat )
5 simpl22 1067 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  Y  C_  A
)
6 simpl23 1068 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  Z  C_  A
)
7 simpl3 993 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )
8 paddasslem.l . . . . 5  |-  .<_  =  ( le `  K )
9 paddasslem.j . . . . 5  |-  .\/  =  ( join `  K )
10 paddasslem.a . . . . 5  |-  A  =  ( Atoms `  K )
11 paddasslem.p . . . . 5  |-  .+  =  ( +P `  K
)
128, 9, 10, 11elpaddn0 33763 . . . 4  |-  ( ( ( K  e.  Lat  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  -> 
( r  e.  ( Y  .+  Z )  <-> 
( r  e.  A  /\  E. y  e.  Y  E. z  e.  Z  r  .<_  ( y  .\/  z ) ) ) )
134, 5, 6, 7, 12syl31anc 1222 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  ( r  e.  ( Y  .+  Z
)  <->  ( r  e.  A  /\  E. y  e.  Y  E. z  e.  Z  r  .<_  ( y  .\/  z ) ) ) )
141, 13mpbid 210 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  ( r  e.  A  /\  E. y  e.  Y  E. z  e.  Z  r  .<_  ( y  .\/  z ) ) )
15 simp11 1018 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  ->  K  e.  HL )
16 simp12 1019 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )
17 simp21 1021 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  ->  p  e.  A )
18 simp31 1024 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
r  e.  A )
1917, 18jca 532 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
( p  e.  A  /\  r  e.  A
) )
20 simp22l 1107 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  ->  x  e.  X )
21 simp32l 1113 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
y  e.  Y )
22 simp32r 1114 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
z  e.  Z )
2320, 21, 223jca 1168 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
) )
24 simp23 1023 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  ->  p  .<_  ( x  .\/  r ) )
25 simp33 1026 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
r  .<_  ( y  .\/  z ) )
2624, 25jca 532 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) )
278, 9, 10, 11paddasslem14 33796 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( p  .<_  ( x  .\/  r
)  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
2815, 16, 19, 23, 26, 27syl32anc 1227 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
29283expia 1190 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  ( (
r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z
)  /\  r  .<_  ( y  .\/  z ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) ) )
30293expd 1205 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  ( r  e.  A  ->  ( ( y  e.  Y  /\  z  e.  Z )  ->  ( r  .<_  ( y 
.\/  z )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) ) ) ) )
3130imp 429 . . . 4  |-  ( ( ( ( K  e.  HL  /\  ( X 
C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  (
p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  /\  r  e.  A )  ->  (
( y  e.  Y  /\  z  e.  Z
)  ->  ( r  .<_  ( y  .\/  z
)  ->  p  e.  ( ( X  .+  Y )  .+  Z
) ) ) )
3231rexlimdvv 2947 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( X 
C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  (
p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  /\  r  e.  A )  ->  ( E. y  e.  Y  E. z  e.  Z  r  .<_  ( y  .\/  z )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) ) )
3332expimpd 603 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  ( (
r  e.  A  /\  E. y  e.  Y  E. z  e.  Z  r  .<_  ( y  .\/  z
) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) ) )
3414, 33mpd 15 1  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2645   E.wrex 2797    C_ wss 3431   (/)c0 3740   class class class wbr 4395   ` cfv 5521  (class class class)co 6195   lecple 14359   joincjn 15228   Latclat 15329   Atomscatm 33227   HLchlt 33314   +Pcpadd 33758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-1st 6682  df-2nd 6683  df-poset 15230  df-plt 15242  df-lub 15258  df-glb 15259  df-join 15260  df-meet 15261  df-p0 15323  df-lat 15330  df-clat 15392  df-oposet 33140  df-ol 33142  df-oml 33143  df-covers 33230  df-ats 33231  df-atl 33262  df-cvlat 33286  df-hlat 33315  df-padd 33759
This theorem is referenced by:  paddasslem16  33798
  Copyright terms: Public domain W3C validator