Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem13 Structured version   Unicode version

Theorem paddasslem13 33834
Description: Lemma for paddass 33840. The case when  r 
.<_  ( x  .\/  y
). (Unlike the proof in Maeda and Maeda, we don't need  x  =/=  y.) (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddasslem13  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )

Proof of Theorem paddasslem13
StepHypRef Expression
1 simpl1l 1039 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  K  e.  HL )
2 simpl21 1066 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  X  C_  A
)
3 simpl22 1067 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  Y  C_  A
)
4 paddasslem.a . . . . 5  |-  A  =  ( Atoms `  K )
5 paddasslem.p . . . . 5  |-  .+  =  ( +P `  K
)
64, 5paddssat 33816 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
71, 2, 3, 6syl3anc 1219 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( X  .+  Y )  C_  A
)
8 simpl23 1068 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  Z  C_  A
)
94, 5sspadd1 33817 . . 3  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  A  /\  Z  C_  A )  ->  ( X  .+  Y )  C_  ( ( X  .+  Y )  .+  Z
) )
101, 7, 8, 9syl3anc 1219 . 2  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( X  .+  Y )  C_  (
( X  .+  Y
)  .+  Z )
)
11 hllat 33366 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
121, 11syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  K  e.  Lat )
13 simprll 761 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  x  e.  X )
14 simprlr 762 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  y  e.  Y )
15 simpl3l 1043 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  A )
16 eqid 2454 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
17 paddasslem.l . . . 4  |-  .<_  =  ( le `  K )
1816, 4atbase 33292 . . . . 5  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
1915, 18syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  ( Base `  K )
)
202, 13sseldd 3468 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  x  e.  A )
2116, 4atbase 33292 . . . . . 6  |-  ( x  e.  A  ->  x  e.  ( Base `  K
) )
2220, 21syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  x  e.  ( Base `  K )
)
23 simpl3r 1044 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  r  e.  A )
2416, 4atbase 33292 . . . . . 6  |-  ( r  e.  A  ->  r  e.  ( Base `  K
) )
2523, 24syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  r  e.  ( Base `  K )
)
26 paddasslem.j . . . . . 6  |-  .\/  =  ( join `  K )
2716, 26latjcl 15343 . . . . 5  |-  ( ( K  e.  Lat  /\  x  e.  ( Base `  K )  /\  r  e.  ( Base `  K
) )  ->  (
x  .\/  r )  e.  ( Base `  K
) )
2812, 22, 25, 27syl3anc 1219 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( x  .\/  r )  e.  (
Base `  K )
)
293, 14sseldd 3468 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  y  e.  A )
3016, 4atbase 33292 . . . . . 6  |-  ( y  e.  A  ->  y  e.  ( Base `  K
) )
3129, 30syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  y  e.  ( Base `  K )
)
3216, 26latjcl 15343 . . . . 5  |-  ( ( K  e.  Lat  /\  x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  ->  (
x  .\/  y )  e.  ( Base `  K
) )
3312, 22, 31, 32syl3anc 1219 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( x  .\/  y )  e.  (
Base `  K )
)
34 simprrr 764 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  .<_  ( x  .\/  r ) )
3516, 17, 26latlej1 15352 . . . . . 6  |-  ( ( K  e.  Lat  /\  x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  ->  x  .<_  ( x  .\/  y
) )
3612, 22, 31, 35syl3anc 1219 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  x  .<_  ( x  .\/  y ) )
37 simprrl 763 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  r  .<_  ( x  .\/  y ) )
3816, 17, 26latjle12 15354 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( x  e.  ( Base `  K )  /\  r  e.  ( Base `  K )  /\  (
x  .\/  y )  e.  ( Base `  K
) ) )  -> 
( ( x  .<_  ( x  .\/  y )  /\  r  .<_  ( x 
.\/  y ) )  <-> 
( x  .\/  r
)  .<_  ( x  .\/  y ) ) )
3912, 22, 25, 33, 38syl13anc 1221 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( (
x  .<_  ( x  .\/  y )  /\  r  .<_  ( x  .\/  y
) )  <->  ( x  .\/  r )  .<_  ( x 
.\/  y ) ) )
4036, 37, 39mpbi2and 912 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( x  .\/  r )  .<_  ( x 
.\/  y ) )
4116, 17, 12, 19, 28, 33, 34, 40lattrd 15350 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  .<_  ( x  .\/  y ) )
4217, 26, 4, 5elpaddri 33804 . . 3  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( x  e.  X  /\  y  e.  Y
)  /\  ( p  e.  A  /\  p  .<_  ( x  .\/  y
) ) )  ->  p  e.  ( X  .+  Y ) )
4312, 2, 3, 13, 14, 15, 41, 42syl322anc 1247 . 2  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  ( X  .+  Y ) )
4410, 43sseldd 3468 1  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648    C_ wss 3439   class class class wbr 4403   ` cfv 5529  (class class class)co 6203   Basecbs 14295   lecple 14367   joincjn 15236   Latclat 15337   Atomscatm 33266   HLchlt 33353   +Pcpadd 33797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-poset 15238  df-lub 15266  df-glb 15267  df-join 15268  df-meet 15269  df-lat 15338  df-ats 33270  df-atl 33301  df-cvlat 33325  df-hlat 33354  df-padd 33798
This theorem is referenced by:  paddasslem14  33835
  Copyright terms: Public domain W3C validator