Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem12 Structured version   Visualization version   Unicode version

Theorem paddasslem12 33442
Description: Lemma for paddass 33449. The case when  x  =  y. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddasslem12  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )

Proof of Theorem paddasslem12
StepHypRef Expression
1 simpl1l 1065 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  K  e.  HL )
2 simpl21 1092 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  X  C_  A
)
3 simpl22 1093 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  Y  C_  A
)
4 paddasslem.a . . . . . 6  |-  A  =  ( Atoms `  K )
5 paddasslem.p . . . . . 6  |-  .+  =  ( +P `  K
)
64, 5paddssat 33425 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
71, 2, 3, 6syl3anc 1276 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( X  .+  Y )  C_  A
)
8 simpl23 1094 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  Z  C_  A
)
91, 7, 83jca 1194 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( K  e.  HL  /\  ( X 
.+  Y )  C_  A  /\  Z  C_  A
) )
104, 5sspadd2 33427 . . . 4  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  A )  ->  Y  C_  ( X  .+  Y
) )
111, 3, 2, 10syl3anc 1276 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  Y  C_  ( X  .+  Y ) )
124, 5paddss1 33428 . . 3  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  A  /\  Z  C_  A )  ->  ( Y  C_  ( X  .+  Y )  ->  ( Y  .+  Z )  C_  ( ( X  .+  Y )  .+  Z
) ) )
139, 11, 12sylc 62 . 2  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( Y  .+  Z )  C_  (
( X  .+  Y
)  .+  Z )
)
14 hllat 32975 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
151, 14syl 17 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  K  e.  Lat )
16 simprll 777 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  y  e.  Y )
17 simprlr 778 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  z  e.  Z )
18 simpl3l 1069 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  A )
19 eqid 2462 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
20 paddasslem.l . . . 4  |-  .<_  =  ( le `  K )
2119, 4atbase 32901 . . . . 5  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
2218, 21syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( Base `  K )
)
233, 16sseldd 3445 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  y  e.  A )
2419, 4atbase 32901 . . . . . 6  |-  ( y  e.  A  ->  y  e.  ( Base `  K
) )
2523, 24syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  y  e.  ( Base `  K )
)
26 simpl3r 1070 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  e.  A )
2719, 4atbase 32901 . . . . . 6  |-  ( r  e.  A  ->  r  e.  ( Base `  K
) )
2826, 27syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  e.  ( Base `  K )
)
29 paddasslem.j . . . . . 6  |-  .\/  =  ( join `  K )
3019, 29latjcl 16352 . . . . 5  |-  ( ( K  e.  Lat  /\  y  e.  ( Base `  K )  /\  r  e.  ( Base `  K
) )  ->  (
y  .\/  r )  e.  ( Base `  K
) )
3115, 25, 28, 30syl3anc 1276 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( y  .\/  r )  e.  (
Base `  K )
)
328, 17sseldd 3445 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  z  e.  A )
3319, 4atbase 32901 . . . . . 6  |-  ( z  e.  A  ->  z  e.  ( Base `  K
) )
3432, 33syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  z  e.  ( Base `  K )
)
3519, 29latjcl 16352 . . . . 5  |-  ( ( K  e.  Lat  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  ->  (
y  .\/  z )  e.  ( Base `  K
) )
3615, 25, 34, 35syl3anc 1276 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( y  .\/  z )  e.  (
Base `  K )
)
37 simpl1r 1066 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  x  =  y )
38 simprrl 779 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  .<_  ( x  .\/  r ) )
39 oveq1 6327 . . . . . . 7  |-  ( x  =  y  ->  (
x  .\/  r )  =  ( y  .\/  r ) )
4039breq2d 4430 . . . . . 6  |-  ( x  =  y  ->  (
p  .<_  ( x  .\/  r )  <->  p  .<_  ( y  .\/  r ) ) )
4140biimpa 491 . . . . 5  |-  ( ( x  =  y  /\  p  .<_  ( x  .\/  r ) )  ->  p  .<_  ( y  .\/  r ) )
4237, 38, 41syl2anc 671 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  .<_  ( y  .\/  r ) )
4319, 20, 29latlej1 16361 . . . . . 6  |-  ( ( K  e.  Lat  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  ->  y  .<_  ( y  .\/  z
) )
4415, 25, 34, 43syl3anc 1276 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  y  .<_  ( y  .\/  z ) )
45 simprrr 780 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  .<_  ( y  .\/  z ) )
4619, 20, 29latjle12 16363 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( y  e.  (
Base `  K )  /\  r  e.  ( Base `  K )  /\  ( y  .\/  z
)  e.  ( Base `  K ) ) )  ->  ( ( y 
.<_  ( y  .\/  z
)  /\  r  .<_  ( y  .\/  z ) )  <->  ( y  .\/  r )  .<_  ( y 
.\/  z ) ) )
4715, 25, 28, 36, 46syl13anc 1278 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( (
y  .<_  ( y  .\/  z )  /\  r  .<_  ( y  .\/  z
) )  <->  ( y  .\/  r )  .<_  ( y 
.\/  z ) ) )
4844, 45, 47mpbi2and 937 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( y  .\/  r )  .<_  ( y 
.\/  z ) )
4919, 20, 15, 22, 31, 36, 42, 48lattrd 16359 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  .<_  ( y  .\/  z ) )
5020, 29, 4, 5elpaddri 33413 . . 3  |-  ( ( ( K  e.  Lat  /\  Y  C_  A  /\  Z  C_  A )  /\  ( y  e.  Y  /\  z  e.  Z
)  /\  ( p  e.  A  /\  p  .<_  ( y  .\/  z
) ) )  ->  p  e.  ( Y  .+  Z ) )
5115, 3, 8, 16, 17, 18, 49, 50syl322anc 1304 . 2  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( Y  .+  Z ) )
5213, 51sseldd 3445 1  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898    C_ wss 3416   class class class wbr 4418   ` cfv 5605  (class class class)co 6320   Basecbs 15176   lecple 15252   joincjn 16244   Latclat 16346   Atomscatm 32875   HLchlt 32962   +Pcpadd 33406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4531  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-br 4419  df-opab 4478  df-mpt 4479  df-id 4771  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-riota 6282  df-ov 6323  df-oprab 6324  df-mpt2 6325  df-1st 6825  df-2nd 6826  df-poset 16246  df-lub 16275  df-glb 16276  df-join 16277  df-meet 16278  df-lat 16347  df-ats 32879  df-atl 32910  df-cvlat 32934  df-hlat 32963  df-padd 33407
This theorem is referenced by:  paddasslem14  33444
  Copyright terms: Public domain W3C validator