Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem12 Structured version   Unicode version

Theorem paddasslem12 32848
Description: Lemma for paddass 32855. The case when  x  =  y. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddasslem12  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )

Proof of Theorem paddasslem12
StepHypRef Expression
1 simpl1l 1048 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  K  e.  HL )
2 simpl21 1075 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  X  C_  A
)
3 simpl22 1076 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  Y  C_  A
)
4 paddasslem.a . . . . . 6  |-  A  =  ( Atoms `  K )
5 paddasslem.p . . . . . 6  |-  .+  =  ( +P `  K
)
64, 5paddssat 32831 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
71, 2, 3, 6syl3anc 1230 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( X  .+  Y )  C_  A
)
8 simpl23 1077 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  Z  C_  A
)
91, 7, 83jca 1177 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( K  e.  HL  /\  ( X 
.+  Y )  C_  A  /\  Z  C_  A
) )
104, 5sspadd2 32833 . . . 4  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  A )  ->  Y  C_  ( X  .+  Y
) )
111, 3, 2, 10syl3anc 1230 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  Y  C_  ( X  .+  Y ) )
124, 5paddss1 32834 . . 3  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  A  /\  Z  C_  A )  ->  ( Y  C_  ( X  .+  Y )  ->  ( Y  .+  Z )  C_  ( ( X  .+  Y )  .+  Z
) ) )
139, 11, 12sylc 59 . 2  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( Y  .+  Z )  C_  (
( X  .+  Y
)  .+  Z )
)
14 hllat 32381 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
151, 14syl 17 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  K  e.  Lat )
16 simprll 764 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  y  e.  Y )
17 simprlr 765 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  z  e.  Z )
18 simpl3l 1052 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  A )
19 eqid 2402 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
20 paddasslem.l . . . 4  |-  .<_  =  ( le `  K )
2119, 4atbase 32307 . . . . 5  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
2218, 21syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( Base `  K )
)
233, 16sseldd 3443 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  y  e.  A )
2419, 4atbase 32307 . . . . . 6  |-  ( y  e.  A  ->  y  e.  ( Base `  K
) )
2523, 24syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  y  e.  ( Base `  K )
)
26 simpl3r 1053 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  e.  A )
2719, 4atbase 32307 . . . . . 6  |-  ( r  e.  A  ->  r  e.  ( Base `  K
) )
2826, 27syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  e.  ( Base `  K )
)
29 paddasslem.j . . . . . 6  |-  .\/  =  ( join `  K )
3019, 29latjcl 16005 . . . . 5  |-  ( ( K  e.  Lat  /\  y  e.  ( Base `  K )  /\  r  e.  ( Base `  K
) )  ->  (
y  .\/  r )  e.  ( Base `  K
) )
3115, 25, 28, 30syl3anc 1230 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( y  .\/  r )  e.  (
Base `  K )
)
328, 17sseldd 3443 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  z  e.  A )
3319, 4atbase 32307 . . . . . 6  |-  ( z  e.  A  ->  z  e.  ( Base `  K
) )
3432, 33syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  z  e.  ( Base `  K )
)
3519, 29latjcl 16005 . . . . 5  |-  ( ( K  e.  Lat  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  ->  (
y  .\/  z )  e.  ( Base `  K
) )
3615, 25, 34, 35syl3anc 1230 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( y  .\/  z )  e.  (
Base `  K )
)
37 simpl1r 1049 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  x  =  y )
38 simprrl 766 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  .<_  ( x  .\/  r ) )
39 oveq1 6285 . . . . . . 7  |-  ( x  =  y  ->  (
x  .\/  r )  =  ( y  .\/  r ) )
4039breq2d 4407 . . . . . 6  |-  ( x  =  y  ->  (
p  .<_  ( x  .\/  r )  <->  p  .<_  ( y  .\/  r ) ) )
4140biimpa 482 . . . . 5  |-  ( ( x  =  y  /\  p  .<_  ( x  .\/  r ) )  ->  p  .<_  ( y  .\/  r ) )
4237, 38, 41syl2anc 659 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  .<_  ( y  .\/  r ) )
4319, 20, 29latlej1 16014 . . . . . 6  |-  ( ( K  e.  Lat  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  ->  y  .<_  ( y  .\/  z
) )
4415, 25, 34, 43syl3anc 1230 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  y  .<_  ( y  .\/  z ) )
45 simprrr 767 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  .<_  ( y  .\/  z ) )
4619, 20, 29latjle12 16016 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( y  e.  (
Base `  K )  /\  r  e.  ( Base `  K )  /\  ( y  .\/  z
)  e.  ( Base `  K ) ) )  ->  ( ( y 
.<_  ( y  .\/  z
)  /\  r  .<_  ( y  .\/  z ) )  <->  ( y  .\/  r )  .<_  ( y 
.\/  z ) ) )
4715, 25, 28, 36, 46syl13anc 1232 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( (
y  .<_  ( y  .\/  z )  /\  r  .<_  ( y  .\/  z
) )  <->  ( y  .\/  r )  .<_  ( y 
.\/  z ) ) )
4844, 45, 47mpbi2and 922 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( y  .\/  r )  .<_  ( y 
.\/  z ) )
4919, 20, 15, 22, 31, 36, 42, 48lattrd 16012 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  .<_  ( y  .\/  z ) )
5020, 29, 4, 5elpaddri 32819 . . 3  |-  ( ( ( K  e.  Lat  /\  Y  C_  A  /\  Z  C_  A )  /\  ( y  e.  Y  /\  z  e.  Z
)  /\  ( p  e.  A  /\  p  .<_  ( y  .\/  z
) ) )  ->  p  e.  ( Y  .+  Z ) )
5115, 3, 8, 16, 17, 18, 49, 50syl322anc 1258 . 2  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( Y  .+  Z ) )
5213, 51sseldd 3443 1  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    C_ wss 3414   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   Basecbs 14841   lecple 14916   joincjn 15897   Latclat 15999   Atomscatm 32281   HLchlt 32368   +Pcpadd 32812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-poset 15899  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-lat 16000  df-ats 32285  df-atl 32316  df-cvlat 32340  df-hlat 32369  df-padd 32813
This theorem is referenced by:  paddasslem14  32850
  Copyright terms: Public domain W3C validator