Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem11 Structured version   Unicode version

Theorem paddasslem11 33479
Description: Lemma for paddass 33487. The case when  p  =  z. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddasslem11  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  p  e.  ( ( X  .+  Y ) 
.+  Z ) )

Proof of Theorem paddasslem11
StepHypRef Expression
1 simplll 757 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  K  e.  HL )
2 simplr3 1032 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  Z  C_  A )
3 simplr1 1030 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  X  C_  A )
4 simplr2 1031 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  Y  C_  A )
5 paddasslem.a . . . . 5  |-  A  =  ( Atoms `  K )
6 paddasslem.p . . . . 5  |-  .+  =  ( +P `  K
)
75, 6paddssat 33463 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
81, 3, 4, 7syl3anc 1218 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  ( X  .+  Y
)  C_  A )
95, 6sspadd2 33465 . . 3  |-  ( ( K  e.  HL  /\  Z  C_  A  /\  ( X  .+  Y )  C_  A )  ->  Z  C_  ( ( X  .+  Y )  .+  Z
) )
101, 2, 8, 9syl3anc 1218 . 2  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  Z  C_  ( ( X  .+  Y )  .+  Z ) )
11 simpllr 758 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  p  =  z )
12 simpr 461 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  z  e.  Z )
1311, 12eqeltrd 2517 . 2  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  p  e.  Z )
1410, 13sseldd 3362 1  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  p  e.  ( ( X  .+  Y ) 
.+  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    C_ wss 3333   ` cfv 5423  (class class class)co 6096   lecple 14250   joincjn 15119   Atomscatm 32913   HLchlt 33000   +Pcpadd 33444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-1st 6582  df-2nd 6583  df-padd 33445
This theorem is referenced by:  paddasslem14  33482
  Copyright terms: Public domain W3C validator