Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem11 Structured version   Unicode version

Theorem paddasslem11 35288
Description: Lemma for paddass 35296. The case when  p  =  z. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddasslem11  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  p  e.  ( ( X  .+  Y ) 
.+  Z ) )

Proof of Theorem paddasslem11
StepHypRef Expression
1 simplll 759 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  K  e.  HL )
2 simplr3 1041 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  Z  C_  A )
3 simplr1 1039 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  X  C_  A )
4 simplr2 1040 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  Y  C_  A )
5 paddasslem.a . . . . 5  |-  A  =  ( Atoms `  K )
6 paddasslem.p . . . . 5  |-  .+  =  ( +P `  K
)
75, 6paddssat 35272 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
81, 3, 4, 7syl3anc 1229 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  ( X  .+  Y
)  C_  A )
95, 6sspadd2 35274 . . 3  |-  ( ( K  e.  HL  /\  Z  C_  A  /\  ( X  .+  Y )  C_  A )  ->  Z  C_  ( ( X  .+  Y )  .+  Z
) )
101, 2, 8, 9syl3anc 1229 . 2  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  Z  C_  ( ( X  .+  Y )  .+  Z ) )
11 simpllr 760 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  p  =  z )
12 simpr 461 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  z  e.  Z )
1311, 12eqeltrd 2531 . 2  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  p  e.  Z )
1410, 13sseldd 3490 1  |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  /\  z  e.  Z )  ->  p  e.  ( ( X  .+  Y ) 
.+  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    C_ wss 3461   ` cfv 5578  (class class class)co 6281   lecple 14581   joincjn 15447   Atomscatm 34722   HLchlt 34809   +Pcpadd 35253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-1st 6785  df-2nd 6786  df-padd 35254
This theorem is referenced by:  paddasslem14  35291
  Copyright terms: Public domain W3C validator