Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem10 Structured version   Unicode version

Theorem paddasslem10 32859
Description: Lemma for paddass 32868. Use paddasslem4 32853 to eliminate  s from paddasslem9 32858. (Contributed by NM, 9-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddasslem10  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )

Proof of Theorem paddasslem10
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simpl11 1074 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  K  e.  HL )
2 simpl3l 1054 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  A )
3 simpl3r 1055 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  e.  A )
41, 2, 33jca 1179 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( K  e.  HL  /\  p  e.  A  /\  r  e.  A ) )
5 an6 1312 . . . . . 6  |-  ( ( ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
) )  <->  ( ( X  C_  A  /\  x  e.  X )  /\  ( Y  C_  A  /\  y  e.  Y )  /\  ( Z  C_  A  /\  z  e.  Z ) ) )
6 ssel2 3439 . . . . . . 7  |-  ( ( X  C_  A  /\  x  e.  X )  ->  x  e.  A )
7 ssel2 3439 . . . . . . 7  |-  ( ( Y  C_  A  /\  y  e.  Y )  ->  y  e.  A )
8 ssel2 3439 . . . . . . 7  |-  ( ( Z  C_  A  /\  z  e.  Z )  ->  z  e.  A )
96, 7, 83anim123i 1184 . . . . . 6  |-  ( ( ( X  C_  A  /\  x  e.  X
)  /\  ( Y  C_  A  /\  y  e.  Y )  /\  ( Z  C_  A  /\  z  e.  Z ) )  -> 
( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )
105, 9sylbi 197 . . . . 5  |-  ( ( ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
) )  ->  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)
11103ad2antl2 1162 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z ) )  -> 
( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )
1211adantrr 717 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )
13 simpl12 1075 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  =/=  z )
14 simpl13 1076 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  x  =/=  y )
15 simprr1 1047 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  -.  r  .<_  ( x  .\/  y
) )
1613, 14, 153jca 1179 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( p  =/=  z  /\  x  =/=  y  /\  -.  r  .<_  ( x  .\/  y
) ) )
17 simprr2 1048 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  .<_  ( x  .\/  r ) )
18 simprr3 1049 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  .<_  ( y  .\/  z ) )
19 paddasslem.l . . . 4  |-  .<_  =  ( le `  K )
20 paddasslem.j . . . 4  |-  .\/  =  ( join `  K )
21 paddasslem.a . . . 4  |-  A  =  ( Atoms `  K )
2219, 20, 21paddasslem4 32853 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  r  e.  A )  /\  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( p  =/=  z  /\  x  =/=  y  /\  -.  r  .<_  ( x 
.\/  y ) ) )  /\  ( p 
.<_  ( x  .\/  r
)  /\  r  .<_  ( y  .\/  z ) ) )  ->  E. s  e.  A  ( s  .<_  ( x  .\/  y
)  /\  s  .<_  ( p  .\/  z ) ) )
234, 12, 16, 17, 18, 22syl32anc 1240 . 2  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  E. s  e.  A  ( s  .<_  ( x  .\/  y
)  /\  s  .<_  ( p  .\/  z ) ) )
24 simpl2 1003 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A
) )
25 simpl3 1004 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( p  e.  A  /\  r  e.  A ) )
261, 24, 253jca 1179 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( K  e.  HL  /\  ( X 
C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
) )
2726adantr 465 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( K  e.  HL  /\  ( X 
C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
) )
28 simplrl 764 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z ) )
2915, 18jca 532 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) ) )
3029adantr 465 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z ) ) )
31 simprl 758 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  s  e.  A
)
32 simprrl 768 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  s  .<_  ( x 
.\/  y ) )
33 simprrr 769 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  s  .<_  ( p 
.\/  z ) )
3431, 32, 333jca 1179 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p 
.\/  z ) ) )
35 paddasslem.p . . . 4  |-  .+  =  ( +P `  K
)
3619, 20, 21, 35paddasslem9 32858 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  p  e.  ( ( X  .+  Y
)  .+  Z )
)
3727, 28, 30, 34, 36syl13anc 1234 . 2  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  p  e.  ( ( X  .+  Y
)  .+  Z )
)
3823, 37rexlimddv 2902 1  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844    =/= wne 2600   E.wrex 2757    C_ wss 3416   class class class wbr 4397   ` cfv 5571  (class class class)co 6280   lecple 14918   joincjn 15899   Atomscatm 32294   HLchlt 32381   +Pcpadd 32825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-1st 6786  df-2nd 6787  df-preset 15883  df-poset 15901  df-plt 15914  df-lub 15930  df-glb 15931  df-join 15932  df-meet 15933  df-p0 15995  df-lat 16002  df-clat 16064  df-oposet 32207  df-ol 32209  df-oml 32210  df-covers 32297  df-ats 32298  df-atl 32329  df-cvlat 32353  df-hlat 32382  df-padd 32826
This theorem is referenced by:  paddasslem14  32863
  Copyright terms: Public domain W3C validator