Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem10 Structured version   Unicode version

Theorem paddasslem10 33363
Description: Lemma for paddass 33372. Use paddasslem4 33357 to eliminate  s from paddasslem9 33362. (Contributed by NM, 9-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddasslem10  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )

Proof of Theorem paddasslem10
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simpl11 1080 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  K  e.  HL )
2 simpl3l 1060 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  A )
3 simpl3r 1061 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  e.  A )
41, 2, 33jca 1185 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( K  e.  HL  /\  p  e.  A  /\  r  e.  A ) )
5 an6 1344 . . . . . 6  |-  ( ( ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
) )  <->  ( ( X  C_  A  /\  x  e.  X )  /\  ( Y  C_  A  /\  y  e.  Y )  /\  ( Z  C_  A  /\  z  e.  Z ) ) )
6 ssel2 3459 . . . . . . 7  |-  ( ( X  C_  A  /\  x  e.  X )  ->  x  e.  A )
7 ssel2 3459 . . . . . . 7  |-  ( ( Y  C_  A  /\  y  e.  Y )  ->  y  e.  A )
8 ssel2 3459 . . . . . . 7  |-  ( ( Z  C_  A  /\  z  e.  Z )  ->  z  e.  A )
96, 7, 83anim123i 1190 . . . . . 6  |-  ( ( ( X  C_  A  /\  x  e.  X
)  /\  ( Y  C_  A  /\  y  e.  Y )  /\  ( Z  C_  A  /\  z  e.  Z ) )  -> 
( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )
105, 9sylbi 198 . . . . 5  |-  ( ( ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
) )  ->  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)
11103ad2antl2 1168 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z ) )  -> 
( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )
1211adantrr 721 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )
13 simpl12 1081 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  =/=  z )
14 simpl13 1082 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  x  =/=  y )
15 simprr1 1053 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  -.  r  .<_  ( x  .\/  y
) )
1613, 14, 153jca 1185 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( p  =/=  z  /\  x  =/=  y  /\  -.  r  .<_  ( x  .\/  y
) ) )
17 simprr2 1054 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  .<_  ( x  .\/  r ) )
18 simprr3 1055 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  .<_  ( y  .\/  z ) )
19 paddasslem.l . . . 4  |-  .<_  =  ( le `  K )
20 paddasslem.j . . . 4  |-  .\/  =  ( join `  K )
21 paddasslem.a . . . 4  |-  A  =  ( Atoms `  K )
2219, 20, 21paddasslem4 33357 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  r  e.  A )  /\  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( p  =/=  z  /\  x  =/=  y  /\  -.  r  .<_  ( x 
.\/  y ) ) )  /\  ( p 
.<_  ( x  .\/  r
)  /\  r  .<_  ( y  .\/  z ) ) )  ->  E. s  e.  A  ( s  .<_  ( x  .\/  y
)  /\  s  .<_  ( p  .\/  z ) ) )
234, 12, 16, 17, 18, 22syl32anc 1272 . 2  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  E. s  e.  A  ( s  .<_  ( x  .\/  y
)  /\  s  .<_  ( p  .\/  z ) ) )
24 simpl2 1009 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A
) )
25 simpl3 1010 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( p  e.  A  /\  r  e.  A ) )
261, 24, 253jca 1185 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( K  e.  HL  /\  ( X 
C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
) )
2726adantr 466 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( K  e.  HL  /\  ( X 
C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
) )
28 simplrl 768 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z ) )
2915, 18jca 534 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) ) )
3029adantr 466 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z ) ) )
31 simprl 762 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  s  e.  A
)
32 simprrl 772 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  s  .<_  ( x 
.\/  y ) )
33 simprrr 773 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  s  .<_  ( p 
.\/  z ) )
3431, 32, 333jca 1185 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p 
.\/  z ) ) )
35 paddasslem.p . . . 4  |-  .+  =  ( +P `  K
)
3619, 20, 21, 35paddasslem9 33362 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  p  e.  ( ( X  .+  Y
)  .+  Z )
)
3727, 28, 30, 34, 36syl13anc 1266 . 2  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  p  e.  ( ( X  .+  Y
)  .+  Z )
)
3823, 37rexlimddv 2918 1  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2614   E.wrex 2772    C_ wss 3436   class class class wbr 4423   ` cfv 5601  (class class class)co 6305   lecple 15196   joincjn 16188   Atomscatm 32798   HLchlt 32885   +Pcpadd 33329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-preset 16172  df-poset 16190  df-plt 16203  df-lub 16219  df-glb 16220  df-join 16221  df-meet 16222  df-p0 16284  df-lat 16291  df-clat 16353  df-oposet 32711  df-ol 32713  df-oml 32714  df-covers 32801  df-ats 32802  df-atl 32833  df-cvlat 32857  df-hlat 32886  df-padd 33330
This theorem is referenced by:  paddasslem14  33367
  Copyright terms: Public domain W3C validator