Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddass Structured version   Visualization version   Unicode version

Theorem paddass 33448
Description: Projective subspace sum is associative. Equation 16.2.1 of [MaedaMaeda] p. 68. In our version, the subspaces do not have to be nonempty. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddass.a  |-  A  =  ( Atoms `  K )
paddass.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddass  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( X 
.+  ( Y  .+  Z ) ) )

Proof of Theorem paddass
StepHypRef Expression
1 simpl 463 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  K  e.  HL )
2 simpr3 1022 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  Z  C_  A )
3 simpr2 1021 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  Y  C_  A )
4 simpr1 1020 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  X  C_  A )
5 paddass.a . . . . 5  |-  A  =  ( Atoms `  K )
6 paddass.p . . . . 5  |-  .+  =  ( +P `  K
)
75, 6paddasslem18 33447 . . . 4  |-  ( ( K  e.  HL  /\  ( Z  C_  A  /\  Y  C_  A  /\  X  C_  A ) )  -> 
( Z  .+  ( Y  .+  X ) ) 
C_  ( ( Z 
.+  Y )  .+  X ) )
81, 2, 3, 4, 7syl13anc 1278 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Z  .+  ( Y  .+  X ) ) 
C_  ( ( Z 
.+  Y )  .+  X ) )
9 hllat 32974 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
105, 6paddcom 33423 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
119, 10syl3an1 1309 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
12113adant3r3 1226 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  Y
)  =  ( Y 
.+  X ) )
1312oveq1d 6330 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( ( Y  .+  X ) 
.+  Z ) )
145, 6paddssat 33424 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  A )  ->  ( Y  .+  X )  C_  A )
151, 3, 4, 14syl3anc 1276 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Y  .+  X
)  C_  A )
165, 6paddcom 33423 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Y  .+  X ) 
C_  A  /\  Z  C_  A )  ->  (
( Y  .+  X
)  .+  Z )  =  ( Z  .+  ( Y  .+  X ) ) )
179, 16syl3an1 1309 . . . . 5  |-  ( ( K  e.  HL  /\  ( Y  .+  X ) 
C_  A  /\  Z  C_  A )  ->  (
( Y  .+  X
)  .+  Z )  =  ( Z  .+  ( Y  .+  X ) ) )
181, 15, 2, 17syl3anc 1276 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( Y  .+  X )  .+  Z
)  =  ( Z 
.+  ( Y  .+  X ) ) )
1913, 18eqtrd 2496 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( Z 
.+  ( Y  .+  X ) ) )
205, 6paddcom 33423 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Y  C_  A  /\  Z  C_  A )  ->  ( Y  .+  Z )  =  ( Z  .+  Y
) )
219, 20syl3an1 1309 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  Z  C_  A )  ->  ( Y  .+  Z )  =  ( Z  .+  Y
) )
22213adant3r1 1224 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Y  .+  Z
)  =  ( Z 
.+  Y ) )
2322oveq2d 6331 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Y  .+  Z ) )  =  ( X  .+  ( Z  .+  Y ) ) )
245, 6paddssat 33424 . . . . . 6  |-  ( ( K  e.  HL  /\  Z  C_  A  /\  Y  C_  A )  ->  ( Z  .+  Y )  C_  A )
251, 2, 3, 24syl3anc 1276 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Z  .+  Y
)  C_  A )
265, 6paddcom 33423 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  ( Z  .+  Y )  C_  A )  ->  ( X  .+  ( Z  .+  Y ) )  =  ( ( Z  .+  Y )  .+  X
) )
279, 26syl3an1 1309 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  ( Z  .+  Y )  C_  A )  ->  ( X  .+  ( Z  .+  Y ) )  =  ( ( Z  .+  Y )  .+  X
) )
281, 4, 25, 27syl3anc 1276 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Z  .+  Y ) )  =  ( ( Z 
.+  Y )  .+  X ) )
2923, 28eqtrd 2496 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Y  .+  Z ) )  =  ( ( Z 
.+  Y )  .+  X ) )
308, 19, 293sstr4d 3487 . 2  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  C_  ( X  .+  ( Y  .+  Z
) ) )
315, 6paddasslem18 33447 . 2  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Y  .+  Z ) ) 
C_  ( ( X 
.+  Y )  .+  Z ) )
3230, 31eqssd 3461 1  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( X 
.+  ( Y  .+  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898    C_ wss 3416   ` cfv 5601  (class class class)co 6315   Latclat 16340   Atomscatm 32874   HLchlt 32961   +Pcpadd 33405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-1st 6820  df-2nd 6821  df-preset 16222  df-poset 16240  df-plt 16253  df-lub 16269  df-glb 16270  df-join 16271  df-meet 16272  df-p0 16334  df-lat 16341  df-clat 16403  df-oposet 32787  df-ol 32789  df-oml 32790  df-covers 32877  df-ats 32878  df-atl 32909  df-cvlat 32933  df-hlat 32962  df-padd 33406
This theorem is referenced by:  padd12N  33449  padd4N  33450  pmodl42N  33461  pmapjlln1  33465
  Copyright terms: Public domain W3C validator