Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddass Structured version   Unicode version

Theorem paddass 35285
Description: Projective subspace sum is associative. Equation 16.2.1 of [MaedaMaeda] p. 68. In our version, the subspaces do not have to be nonempty. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddass.a  |-  A  =  ( Atoms `  K )
paddass.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddass  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( X 
.+  ( Y  .+  Z ) ) )

Proof of Theorem paddass
StepHypRef Expression
1 simpl 457 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  K  e.  HL )
2 simpr3 1003 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  Z  C_  A )
3 simpr2 1002 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  Y  C_  A )
4 simpr1 1001 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  X  C_  A )
5 paddass.a . . . . 5  |-  A  =  ( Atoms `  K )
6 paddass.p . . . . 5  |-  .+  =  ( +P `  K
)
75, 6paddasslem18 35284 . . . 4  |-  ( ( K  e.  HL  /\  ( Z  C_  A  /\  Y  C_  A  /\  X  C_  A ) )  -> 
( Z  .+  ( Y  .+  X ) ) 
C_  ( ( Z 
.+  Y )  .+  X ) )
81, 2, 3, 4, 7syl13anc 1229 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Z  .+  ( Y  .+  X ) ) 
C_  ( ( Z 
.+  Y )  .+  X ) )
9 hllat 34811 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
105, 6paddcom 35260 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
119, 10syl3an1 1260 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
12113adant3r3 1206 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  Y
)  =  ( Y 
.+  X ) )
1312oveq1d 6293 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( ( Y  .+  X ) 
.+  Z ) )
145, 6paddssat 35261 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  A )  ->  ( Y  .+  X )  C_  A )
151, 3, 4, 14syl3anc 1227 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Y  .+  X
)  C_  A )
165, 6paddcom 35260 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Y  .+  X ) 
C_  A  /\  Z  C_  A )  ->  (
( Y  .+  X
)  .+  Z )  =  ( Z  .+  ( Y  .+  X ) ) )
179, 16syl3an1 1260 . . . . 5  |-  ( ( K  e.  HL  /\  ( Y  .+  X ) 
C_  A  /\  Z  C_  A )  ->  (
( Y  .+  X
)  .+  Z )  =  ( Z  .+  ( Y  .+  X ) ) )
181, 15, 2, 17syl3anc 1227 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( Y  .+  X )  .+  Z
)  =  ( Z 
.+  ( Y  .+  X ) ) )
1913, 18eqtrd 2482 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( Z 
.+  ( Y  .+  X ) ) )
205, 6paddcom 35260 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Y  C_  A  /\  Z  C_  A )  ->  ( Y  .+  Z )  =  ( Z  .+  Y
) )
219, 20syl3an1 1260 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  Z  C_  A )  ->  ( Y  .+  Z )  =  ( Z  .+  Y
) )
22213adant3r1 1204 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Y  .+  Z
)  =  ( Z 
.+  Y ) )
2322oveq2d 6294 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Y  .+  Z ) )  =  ( X  .+  ( Z  .+  Y ) ) )
245, 6paddssat 35261 . . . . . 6  |-  ( ( K  e.  HL  /\  Z  C_  A  /\  Y  C_  A )  ->  ( Z  .+  Y )  C_  A )
251, 2, 3, 24syl3anc 1227 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Z  .+  Y
)  C_  A )
265, 6paddcom 35260 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  ( Z  .+  Y )  C_  A )  ->  ( X  .+  ( Z  .+  Y ) )  =  ( ( Z  .+  Y )  .+  X
) )
279, 26syl3an1 1260 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  ( Z  .+  Y )  C_  A )  ->  ( X  .+  ( Z  .+  Y ) )  =  ( ( Z  .+  Y )  .+  X
) )
281, 4, 25, 27syl3anc 1227 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Z  .+  Y ) )  =  ( ( Z 
.+  Y )  .+  X ) )
2923, 28eqtrd 2482 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Y  .+  Z ) )  =  ( ( Z 
.+  Y )  .+  X ) )
308, 19, 293sstr4d 3530 . 2  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  C_  ( X  .+  ( Y  .+  Z
) ) )
315, 6paddasslem18 35284 . 2  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Y  .+  Z ) ) 
C_  ( ( X 
.+  Y )  .+  Z ) )
3230, 31eqssd 3504 1  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( X 
.+  ( Y  .+  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    C_ wss 3459   ` cfv 5575  (class class class)co 6278   Latclat 15546   Atomscatm 34711   HLchlt 34798   +Pcpadd 35242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4545  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-op 4018  df-uni 4232  df-iun 4314  df-br 4435  df-opab 4493  df-mpt 4494  df-id 4782  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-riota 6239  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6782  df-2nd 6783  df-preset 15428  df-poset 15446  df-plt 15459  df-lub 15475  df-glb 15476  df-join 15477  df-meet 15478  df-p0 15540  df-lat 15547  df-clat 15609  df-oposet 34624  df-ol 34626  df-oml 34627  df-covers 34714  df-ats 34715  df-atl 34746  df-cvlat 34770  df-hlat 34799  df-padd 35243
This theorem is referenced by:  padd12N  35286  padd4N  35287  pmodl42N  35298  pmapjlln1  35302
  Copyright terms: Public domain W3C validator