MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovprc2 Structured version   Unicode version

Theorem ovprc2 6228
Description: The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
ovprc1.1  |-  Rel  dom  F
Assertion
Ref Expression
ovprc2  |-  ( -.  B  e.  _V  ->  ( A F B )  =  (/) )

Proof of Theorem ovprc2
StepHypRef Expression
1 simpr 461 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  B  e.  _V )
21con3i 135 . 2  |-  ( -.  B  e.  _V  ->  -.  ( A  e.  _V  /\  B  e.  _V )
)
3 ovprc1.1 . . 3  |-  Rel  dom  F
43ovprc 6226 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A F B )  =  (/) )
52, 4syl 16 1  |-  ( -.  B  e.  _V  ->  ( A F B )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3076   (/)c0 3744   dom cdm 4947   Rel wrel 4952  (class class class)co 6199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-br 4400  df-opab 4458  df-xp 4953  df-rel 4954  df-dm 4957  df-iota 5488  df-fv 5533  df-ov 6202
This theorem is referenced by:  ressbasss  14348  ress0  14350  wunress  14355  0rest  14486  firest  14489  subcmn  16441  dprdval0prc  16605  psrbas  17570  psrbasOLD  17571  psr1val  17765  vr1val  17771  ply1ascl  17834  evl1fval  17886  zrhval  18063  dsmmval2  18285  restbas  18893  resstopn  18921  deg1fval  21683  submomnd  26317  suborng  26427
  Copyright terms: Public domain W3C validator