MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolval Structured version   Unicode version

Theorem ovolval 21989
Description: The value of the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
ovolval.1  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
Assertion
Ref Expression
ovolval  |-  ( A 
C_  RR  ->  ( vol* `  A )  =  sup ( M ,  RR* ,  `'  <  )
)
Distinct variable group:    y, f, A
Allowed substitution hints:    M( y, f)

Proof of Theorem ovolval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reex 9512 . . 3  |-  RR  e.  _V
21elpw2 4542 . 2  |-  ( A  e.  ~P RR  <->  A  C_  RR )
3 sseq1 3451 . . . . . . . 8  |-  ( x  =  A  ->  (
x  C_  U. ran  ( (,)  o.  f )  <->  A  C_  U. ran  ( (,)  o.  f ) ) )
43anbi1d 702 . . . . . . 7  |-  ( x  =  A  ->  (
( x  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  <-> 
( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) ) )
54rexbidv 2906 . . . . . 6  |-  ( x  =  A  ->  ( E. f  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  <->  E. f  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) ) )
65rabbidv 3039 . . . . 5  |-  ( x  =  A  ->  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) }  =  { y  e. 
RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } )
7 ovolval.1 . . . . 5  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
86, 7syl6eqr 2451 . . . 4  |-  ( x  =  A  ->  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) }  =  M )
98supeq1d 7838 . . 3  |-  ( x  =  A  ->  sup ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) } ,  RR* ,  `'  <  )  =  sup ( M ,  RR* ,  `'  <  ) )
10 df-ovol 21980 . . 3  |-  vol* 
=  ( x  e. 
~P RR  |->  sup ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) } ,  RR* ,  `'  <  ) )
11 xrltso 11286 . . . . 5  |-  <  Or  RR*
12 cnvso 5468 . . . . 5  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
1311, 12mpbi 208 . . . 4  |-  `'  <  Or 
RR*
1413supex 7855 . . 3  |-  sup ( M ,  RR* ,  `'  <  )  e.  _V
159, 10, 14fvmpt 5870 . 2  |-  ( A  e.  ~P RR  ->  ( vol* `  A
)  =  sup ( M ,  RR* ,  `'  <  ) )
162, 15sylbir 213 1  |-  ( A 
C_  RR  ->  ( vol* `  A )  =  sup ( M ,  RR* ,  `'  <  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1399    e. wcel 1836   E.wrex 2743   {crab 2746    i^i cin 3401    C_ wss 3402   ~Pcpw 3940   U.cuni 4176    Or wor 4726    X. cxp 4924   `'ccnv 4925   ran crn 4927    o. ccom 4930   ` cfv 5509  (class class class)co 6214    ^m cmap 7356   supcsup 7833   RRcr 9420   1c1 9422    + caddc 9424   RR*cxr 9556    < clt 9557    <_ cle 9558    - cmin 9736   NNcn 10470   (,)cioo 11468    seqcseq 12029   abscabs 13088   vol*covol 21978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509  ax-cnex 9477  ax-resscn 9478  ax-pre-lttri 9495  ax-pre-lttrn 9496
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-nel 2590  df-ral 2747  df-rex 2748  df-rmo 2750  df-rab 2751  df-v 3049  df-sbc 3266  df-csb 3362  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-op 3964  df-uni 4177  df-br 4381  df-opab 4439  df-mpt 4440  df-id 4722  df-po 4727  df-so 4728  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-f 5513  df-f1 5514  df-fo 5515  df-f1o 5516  df-fv 5517  df-er 7247  df-en 7454  df-dom 7455  df-sdom 7456  df-sup 7834  df-pnf 9559  df-mnf 9560  df-xr 9561  df-ltxr 9562  df-ovol 21980
This theorem is referenced by:  ovolcl  21993  ovollb  21994  ovolgelb  21995  ovolge0  21996  ovolsslem  21999  ovolshft  22026  ovolicc2  22037  ismblfin  30256
  Copyright terms: Public domain W3C validator