MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolunlem1 Structured version   Unicode version

Theorem ovolunlem1 21096
Description: Lemma for ovolun 21098. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovolun.a  |-  ( ph  ->  ( A  C_  RR  /\  ( vol* `  A )  e.  RR ) )
ovolun.b  |-  ( ph  ->  ( B  C_  RR  /\  ( vol* `  B )  e.  RR ) )
ovolun.c  |-  ( ph  ->  C  e.  RR+ )
ovolun.s  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
ovolun.t  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
ovolun.u  |-  U  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
ovolun.f1  |-  ( ph  ->  F  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
ovolun.f2  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  F ) )
ovolun.f3  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  ( C  /  2 ) ) )
ovolun.g1  |-  ( ph  ->  G  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
ovolun.g2  |-  ( ph  ->  B  C_  U. ran  ( (,)  o.  G ) )
ovolun.g3  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  B )  +  ( C  /  2 ) ) )
ovolun.h  |-  H  =  ( n  e.  NN  |->  if ( ( n  / 
2 )  e.  NN ,  ( G `  ( n  /  2
) ) ,  ( F `  ( ( n  +  1 )  /  2 ) ) ) )
Assertion
Ref Expression
ovolunlem1  |-  ( ph  ->  ( vol* `  ( A  u.  B
) )  <_  (
( ( vol* `  A )  +  ( vol* `  B
) )  +  C
) )
Distinct variable groups:    C, n    n, F    A, n    B, n   
n, G    ph, n
Allowed substitution hints:    S( n)    T( n)    U( n)    H( n)

Proof of Theorem ovolunlem1
Dummy variables  k 
z  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolun.a . . . . 5  |-  ( ph  ->  ( A  C_  RR  /\  ( vol* `  A )  e.  RR ) )
21simpld 459 . . . 4  |-  ( ph  ->  A  C_  RR )
3 ovolun.b . . . . 5  |-  ( ph  ->  ( B  C_  RR  /\  ( vol* `  B )  e.  RR ) )
43simpld 459 . . . 4  |-  ( ph  ->  B  C_  RR )
52, 4unssd 3630 . . 3  |-  ( ph  ->  ( A  u.  B
)  C_  RR )
6 ovolun.g1 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
7 reex 9474 . . . . . . . . . . . . . . 15  |-  RR  e.  _V
87, 7xpex 6608 . . . . . . . . . . . . . 14  |-  ( RR 
X.  RR )  e. 
_V
98inex2 4532 . . . . . . . . . . . . 13  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
10 nnex 10429 . . . . . . . . . . . . 13  |-  NN  e.  _V
119, 10elmap 7341 . . . . . . . . . . . 12  |-  ( G  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
126, 11sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
1312adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  G : NN
--> (  <_  i^i  ( RR  X.  RR ) ) )
1413ffvelrnda 5942 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
n  /  2 )  e.  NN )  -> 
( G `  (
n  /  2 ) )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
15 nneo 10826 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
( n  /  2
)  e.  NN  <->  -.  (
( n  +  1 )  /  2 )  e.  NN ) )
1615adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( n  /  2 )  e.  NN  <->  -.  (
( n  +  1 )  /  2 )  e.  NN ) )
1716con2bid 329 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( n  +  1 )  /  2 )  e.  NN  <->  -.  (
n  /  2 )  e.  NN ) )
1817biimpar 485 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  -.  ( n  /  2
)  e.  NN )  ->  ( ( n  +  1 )  / 
2 )  e.  NN )
19 ovolun.f1 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
209, 10elmap 7341 . . . . . . . . . . . . 13  |-  ( F  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2119, 20sylib 196 . . . . . . . . . . . 12  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2221adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  F : NN
--> (  <_  i^i  ( RR  X.  RR ) ) )
2322ffvelrnda 5942 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
( n  +  1 )  /  2 )  e.  NN )  -> 
( F `  (
( n  +  1 )  /  2 ) )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
2418, 23syldan 470 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  -.  ( n  /  2
)  e.  NN )  ->  ( F `  ( ( n  + 
1 )  /  2
) )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
2514, 24ifclda 3919 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  if ( ( n  /  2
)  e.  NN , 
( G `  (
n  /  2 ) ) ,  ( F `
 ( ( n  +  1 )  / 
2 ) ) )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
26 ovolun.h . . . . . . . 8  |-  H  =  ( n  e.  NN  |->  if ( ( n  / 
2 )  e.  NN ,  ( G `  ( n  /  2
) ) ,  ( F `  ( ( n  +  1 )  /  2 ) ) ) )
2725, 26fmptd 5966 . . . . . . 7  |-  ( ph  ->  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
28 eqid 2451 . . . . . . . 8  |-  ( ( abs  o.  -  )  o.  H )  =  ( ( abs  o.  -  )  o.  H )
29 ovolun.u . . . . . . . 8  |-  U  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
3028, 29ovolsf 21072 . . . . . . 7  |-  ( H : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U : NN --> ( 0 [,) +oo ) )
3127, 30syl 16 . . . . . 6  |-  ( ph  ->  U : NN --> ( 0 [,) +oo ) )
32 0re 9487 . . . . . . 7  |-  0  e.  RR
33 pnfxr 11193 . . . . . . 7  |- +oo  e.  RR*
34 icossre 11477 . . . . . . 7  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
0 [,) +oo )  C_  RR )
3532, 33, 34mp2an 672 . . . . . 6  |-  ( 0 [,) +oo )  C_  RR
36 fss 5665 . . . . . 6  |-  ( ( U : NN --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  RR )  ->  U : NN --> RR )
3731, 35, 36sylancl 662 . . . . 5  |-  ( ph  ->  U : NN --> RR )
38 frn 5663 . . . . 5  |-  ( U : NN --> RR  ->  ran 
U  C_  RR )
3937, 38syl 16 . . . 4  |-  ( ph  ->  ran  U  C_  RR )
40 1nn 10434 . . . . . . 7  |-  1  e.  NN
41 1z 10777 . . . . . . . . . 10  |-  1  e.  ZZ
42 seqfn 11919 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  seq 1 (  +  , 
( ( abs  o.  -  )  o.  H
) )  Fn  ( ZZ>=
`  1 ) )
4341, 42mp1i 12 . . . . . . . . 9  |-  ( ph  ->  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )  Fn  ( ZZ>= `  1 )
)
4429fneq1i 5603 . . . . . . . . . 10  |-  ( U  Fn  NN  <->  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  H )
)  Fn  NN )
45 nnuz 10997 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
4645fneq2i 5604 . . . . . . . . . 10  |-  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  H
) )  Fn  NN  <->  seq 1 (  +  , 
( ( abs  o.  -  )  o.  H
) )  Fn  ( ZZ>=
`  1 ) )
4744, 46bitri 249 . . . . . . . . 9  |-  ( U  Fn  NN  <->  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  H )
)  Fn  ( ZZ>= ` 
1 ) )
4843, 47sylibr 212 . . . . . . . 8  |-  ( ph  ->  U  Fn  NN )
49 fndm 5608 . . . . . . . 8  |-  ( U  Fn  NN  ->  dom  U  =  NN )
5048, 49syl 16 . . . . . . 7  |-  ( ph  ->  dom  U  =  NN )
5140, 50syl5eleqr 2546 . . . . . 6  |-  ( ph  ->  1  e.  dom  U
)
52 ne0i 3741 . . . . . 6  |-  ( 1  e.  dom  U  ->  dom  U  =/=  (/) )
5351, 52syl 16 . . . . 5  |-  ( ph  ->  dom  U  =/=  (/) )
54 dm0rn0 5154 . . . . . 6  |-  ( dom 
U  =  (/)  <->  ran  U  =  (/) )
5554necon3bii 2716 . . . . 5  |-  ( dom 
U  =/=  (/)  <->  ran  U  =/=  (/) )
5653, 55sylib 196 . . . 4  |-  ( ph  ->  ran  U  =/=  (/) )
571simprd 463 . . . . . . . 8  |-  ( ph  ->  ( vol* `  A )  e.  RR )
583simprd 463 . . . . . . . 8  |-  ( ph  ->  ( vol* `  B )  e.  RR )
5957, 58readdcld 9514 . . . . . . 7  |-  ( ph  ->  ( ( vol* `  A )  +  ( vol* `  B
) )  e.  RR )
60 ovolun.c . . . . . . . 8  |-  ( ph  ->  C  e.  RR+ )
6160rpred 11128 . . . . . . 7  |-  ( ph  ->  C  e.  RR )
6259, 61readdcld 9514 . . . . . 6  |-  ( ph  ->  ( ( ( vol* `  A )  +  ( vol* `  B ) )  +  C )  e.  RR )
63 ovolun.s . . . . . . . . 9  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
64 ovolun.t . . . . . . . . 9  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
65 ovolun.f2 . . . . . . . . 9  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  F ) )
66 ovolun.f3 . . . . . . . . 9  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  ( C  /  2 ) ) )
67 ovolun.g2 . . . . . . . . 9  |-  ( ph  ->  B  C_  U. ran  ( (,)  o.  G ) )
68 ovolun.g3 . . . . . . . . 9  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  B )  +  ( C  /  2 ) ) )
691, 3, 60, 63, 64, 29, 19, 65, 66, 6, 67, 68, 26ovolunlem1a 21095 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( U `
 k )  <_ 
( ( ( vol* `  A )  +  ( vol* `  B ) )  +  C ) )
7069ralrimiva 2822 . . . . . . 7  |-  ( ph  ->  A. k  e.  NN  ( U `  k )  <_  ( ( ( vol* `  A
)  +  ( vol* `  B )
)  +  C ) )
71 breq1 4393 . . . . . . . . 9  |-  ( z  =  ( U `  k )  ->  (
z  <_  ( (
( vol* `  A )  +  ( vol* `  B
) )  +  C
)  <->  ( U `  k )  <_  (
( ( vol* `  A )  +  ( vol* `  B
) )  +  C
) ) )
7271ralrn 5945 . . . . . . . 8  |-  ( U  Fn  NN  ->  ( A. z  e.  ran  U  z  <_  ( (
( vol* `  A )  +  ( vol* `  B
) )  +  C
)  <->  A. k  e.  NN  ( U `  k )  <_  ( ( ( vol* `  A
)  +  ( vol* `  B )
)  +  C ) ) )
7348, 72syl 16 . . . . . . 7  |-  ( ph  ->  ( A. z  e. 
ran  U  z  <_  ( ( ( vol* `  A )  +  ( vol* `  B
) )  +  C
)  <->  A. k  e.  NN  ( U `  k )  <_  ( ( ( vol* `  A
)  +  ( vol* `  B )
)  +  C ) ) )
7470, 73mpbird 232 . . . . . 6  |-  ( ph  ->  A. z  e.  ran  U  z  <_  ( (
( vol* `  A )  +  ( vol* `  B
) )  +  C
) )
75 breq2 4394 . . . . . . . 8  |-  ( k  =  ( ( ( vol* `  A
)  +  ( vol* `  B )
)  +  C )  ->  ( z  <_ 
k  <->  z  <_  (
( ( vol* `  A )  +  ( vol* `  B
) )  +  C
) ) )
7675ralbidv 2839 . . . . . . 7  |-  ( k  =  ( ( ( vol* `  A
)  +  ( vol* `  B )
)  +  C )  ->  ( A. z  e.  ran  U  z  <_ 
k  <->  A. z  e.  ran  U  z  <_  ( (
( vol* `  A )  +  ( vol* `  B
) )  +  C
) ) )
7776rspcev 3169 . . . . . 6  |-  ( ( ( ( ( vol* `  A )  +  ( vol* `  B ) )  +  C )  e.  RR  /\ 
A. z  e.  ran  U  z  <_  ( (
( vol* `  A )  +  ( vol* `  B
) )  +  C
) )  ->  E. k  e.  RR  A. z  e. 
ran  U  z  <_  k )
7862, 74, 77syl2anc 661 . . . . 5  |-  ( ph  ->  E. k  e.  RR  A. z  e.  ran  U  z  <_  k )
79 ressxr 9528 . . . . . . 7  |-  RR  C_  RR*
8039, 79syl6ss 3466 . . . . . 6  |-  ( ph  ->  ran  U  C_  RR* )
81 supxrbnd2 11386 . . . . . 6  |-  ( ran 
U  C_  RR*  ->  ( E. k  e.  RR  A. z  e.  ran  U  z  <_  k  <->  sup ( ran  U ,  RR* ,  <  )  < +oo ) )
8280, 81syl 16 . . . . 5  |-  ( ph  ->  ( E. k  e.  RR  A. z  e. 
ran  U  z  <_  k  <->  sup ( ran  U ,  RR* ,  <  )  < +oo ) )
8378, 82mpbid 210 . . . 4  |-  ( ph  ->  sup ( ran  U ,  RR* ,  <  )  < +oo )
84 supxrbnd 11392 . . . 4  |-  ( ( ran  U  C_  RR  /\ 
ran  U  =/=  (/)  /\  sup ( ran  U ,  RR* ,  <  )  < +oo )  ->  sup ( ran  U ,  RR* ,  <  )  e.  RR )
8539, 56, 83, 84syl3anc 1219 . . 3  |-  ( ph  ->  sup ( ran  U ,  RR* ,  <  )  e.  RR )
86 nncn 10431 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  m  e.  CC )
8786adantl 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  CC )
88872timesd 10668 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2  x.  m )  =  ( m  +  m
) )
8988oveq1d 6205 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 2  x.  m )  -  1 )  =  ( ( m  +  m )  -  1 ) )
90 ax-1cn 9441 . . . . . . . . . . . . . . 15  |-  1  e.  CC
9190a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  1  e.  CC )
9287, 87, 91addsubassd 9840 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( m  +  m )  -  1 )  =  ( m  +  ( m  -  1 ) ) )
9389, 92eqtrd 2492 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 2  x.  m )  -  1 )  =  ( m  +  ( m  -  1 ) ) )
94 simpr 461 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  NN )
95 nnm1nn0 10722 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  (
m  -  1 )  e.  NN0 )
9695adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( m  -  1 )  e. 
NN0 )
97 nnnn0addcl 10711 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  ( m  -  1
)  e.  NN0 )  ->  ( m  +  ( m  -  1 ) )  e.  NN )
9894, 96, 97syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( m  +  ( m  - 
1 ) )  e.  NN )
9993, 98eqeltrd 2539 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 2  x.  m )  -  1 )  e.  NN )
100 oveq1 6197 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( ( 2  x.  m )  - 
1 )  ->  (
n  /  2 )  =  ( ( ( 2  x.  m )  -  1 )  / 
2 ) )
101100eleq1d 2520 . . . . . . . . . . . . . . 15  |-  ( n  =  ( ( 2  x.  m )  - 
1 )  ->  (
( n  /  2
)  e.  NN  <->  ( (
( 2  x.  m
)  -  1 )  /  2 )  e.  NN ) )
102100fveq2d 5793 . . . . . . . . . . . . . . 15  |-  ( n  =  ( ( 2  x.  m )  - 
1 )  ->  ( G `  ( n  /  2 ) )  =  ( G `  ( ( ( 2  x.  m )  - 
1 )  /  2
) ) )
103 oveq1 6197 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( ( 2  x.  m )  - 
1 )  ->  (
n  +  1 )  =  ( ( ( 2  x.  m )  -  1 )  +  1 ) )
104103oveq1d 6205 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( ( 2  x.  m )  - 
1 )  ->  (
( n  +  1 )  /  2 )  =  ( ( ( ( 2  x.  m
)  -  1 )  +  1 )  / 
2 ) )
105104fveq2d 5793 . . . . . . . . . . . . . . 15  |-  ( n  =  ( ( 2  x.  m )  - 
1 )  ->  ( F `  ( (
n  +  1 )  /  2 ) )  =  ( F `  ( ( ( ( 2  x.  m )  -  1 )  +  1 )  /  2
) ) )
106101, 102, 105ifbieq12d 3914 . . . . . . . . . . . . . 14  |-  ( n  =  ( ( 2  x.  m )  - 
1 )  ->  if ( ( n  / 
2 )  e.  NN ,  ( G `  ( n  /  2
) ) ,  ( F `  ( ( n  +  1 )  /  2 ) ) )  =  if ( ( ( ( 2  x.  m )  - 
1 )  /  2
)  e.  NN , 
( G `  (
( ( 2  x.  m )  -  1 )  /  2 ) ) ,  ( F `
 ( ( ( ( 2  x.  m
)  -  1 )  +  1 )  / 
2 ) ) ) )
107 fvex 5799 . . . . . . . . . . . . . . 15  |-  ( G `
 ( ( ( 2  x.  m )  -  1 )  / 
2 ) )  e. 
_V
108 fvex 5799 . . . . . . . . . . . . . . 15  |-  ( F `
 ( ( ( ( 2  x.  m
)  -  1 )  +  1 )  / 
2 ) )  e. 
_V
109107, 108ifex 3956 . . . . . . . . . . . . . 14  |-  if ( ( ( ( 2  x.  m )  - 
1 )  /  2
)  e.  NN , 
( G `  (
( ( 2  x.  m )  -  1 )  /  2 ) ) ,  ( F `
 ( ( ( ( 2  x.  m
)  -  1 )  +  1 )  / 
2 ) ) )  e.  _V
110106, 26, 109fvmpt 5873 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  m
)  -  1 )  e.  NN  ->  ( H `  ( (
2  x.  m )  -  1 ) )  =  if ( ( ( ( 2  x.  m )  -  1 )  /  2 )  e.  NN ,  ( G `  ( ( ( 2  x.  m
)  -  1 )  /  2 ) ) ,  ( F `  ( ( ( ( 2  x.  m )  -  1 )  +  1 )  /  2
) ) ) )
11199, 110syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( H `
 ( ( 2  x.  m )  - 
1 ) )  =  if ( ( ( ( 2  x.  m
)  -  1 )  /  2 )  e.  NN ,  ( G `
 ( ( ( 2  x.  m )  -  1 )  / 
2 ) ) ,  ( F `  (
( ( ( 2  x.  m )  - 
1 )  +  1 )  /  2 ) ) ) )
112 2nn 10580 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  NN
113 nnmulcl 10446 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  NN  /\  m  e.  NN )  ->  ( 2  x.  m
)  e.  NN )
114112, 94, 113sylancr 663 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2  x.  m )  e.  NN )
115114nncnd 10439 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2  x.  m )  e.  CC )
116 npcan 9720 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2  x.  m
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  m )  - 
1 )  +  1 )  =  ( 2  x.  m ) )
117115, 90, 116sylancl 662 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( 2  x.  m
)  -  1 )  +  1 )  =  ( 2  x.  m
) )
118117oveq1d 6205 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( ( 2  x.  m )  -  1 )  +  1 )  /  2 )  =  ( ( 2  x.  m )  /  2
) )
119 2cn 10493 . . . . . . . . . . . . . . . . . 18  |-  2  e.  CC
120 2ne0 10515 . . . . . . . . . . . . . . . . . 18  |-  2  =/=  0
121 divcan3 10119 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  m
)  /  2 )  =  m )
122119, 120, 121mp3an23 1307 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  CC  ->  (
( 2  x.  m
)  /  2 )  =  m )
12387, 122syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 2  x.  m )  /  2 )  =  m )
124118, 123eqtrd 2492 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( ( 2  x.  m )  -  1 )  +  1 )  /  2 )  =  m )
125124, 94eqeltrd 2539 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( ( 2  x.  m )  -  1 )  +  1 )  /  2 )  e.  NN )
126 nneo 10826 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2  x.  m
)  -  1 )  e.  NN  ->  (
( ( ( 2  x.  m )  - 
1 )  /  2
)  e.  NN  <->  -.  (
( ( ( 2  x.  m )  - 
1 )  +  1 )  /  2 )  e.  NN ) )
12799, 126syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( ( 2  x.  m )  -  1 )  /  2 )  e.  NN  <->  -.  (
( ( ( 2  x.  m )  - 
1 )  +  1 )  /  2 )  e.  NN ) )
128127con2bid 329 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( ( ( 2  x.  m )  - 
1 )  +  1 )  /  2 )  e.  NN  <->  -.  (
( ( 2  x.  m )  -  1 )  /  2 )  e.  NN ) )
129125, 128mpbid 210 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  -.  (
( ( 2  x.  m )  -  1 )  /  2 )  e.  NN )
130 iffalse 3897 . . . . . . . . . . . . 13  |-  ( -.  ( ( ( 2  x.  m )  - 
1 )  /  2
)  e.  NN  ->  if ( ( ( ( 2  x.  m )  -  1 )  / 
2 )  e.  NN ,  ( G `  ( ( ( 2  x.  m )  - 
1 )  /  2
) ) ,  ( F `  ( ( ( ( 2  x.  m )  -  1 )  +  1 )  /  2 ) ) )  =  ( F `
 ( ( ( ( 2  x.  m
)  -  1 )  +  1 )  / 
2 ) ) )
131129, 130syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  if ( ( ( ( 2  x.  m )  - 
1 )  /  2
)  e.  NN , 
( G `  (
( ( 2  x.  m )  -  1 )  /  2 ) ) ,  ( F `
 ( ( ( ( 2  x.  m
)  -  1 )  +  1 )  / 
2 ) ) )  =  ( F `  ( ( ( ( 2  x.  m )  -  1 )  +  1 )  /  2
) ) )
132124fveq2d 5793 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 ( ( ( ( 2  x.  m
)  -  1 )  +  1 )  / 
2 ) )  =  ( F `  m
) )
133111, 131, 1323eqtrd 2496 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( H `
 ( ( 2  x.  m )  - 
1 ) )  =  ( F `  m
) )
134 fveq2 5789 . . . . . . . . . . . . 13  |-  ( k  =  ( ( 2  x.  m )  - 
1 )  ->  ( H `  k )  =  ( H `  ( ( 2  x.  m )  -  1 ) ) )
135134eqeq1d 2453 . . . . . . . . . . . 12  |-  ( k  =  ( ( 2  x.  m )  - 
1 )  ->  (
( H `  k
)  =  ( F `
 m )  <->  ( H `  ( ( 2  x.  m )  -  1 ) )  =  ( F `  m ) ) )
136135rspcev 3169 . . . . . . . . . . 11  |-  ( ( ( ( 2  x.  m )  -  1 )  e.  NN  /\  ( H `  ( ( 2  x.  m )  -  1 ) )  =  ( F `  m ) )  ->  E. k  e.  NN  ( H `  k )  =  ( F `  m ) )
13799, 133, 136syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  E. k  e.  NN  ( H `  k )  =  ( F `  m ) )
138 fveq2 5789 . . . . . . . . . . . . . 14  |-  ( ( H `  k )  =  ( F `  m )  ->  ( 1st `  ( H `  k ) )  =  ( 1st `  ( F `  m )
) )
139138breq1d 4400 . . . . . . . . . . . . 13  |-  ( ( H `  k )  =  ( F `  m )  ->  (
( 1st `  ( H `  k )
)  <  z  <->  ( 1st `  ( F `  m
) )  <  z
) )
140 fveq2 5789 . . . . . . . . . . . . . 14  |-  ( ( H `  k )  =  ( F `  m )  ->  ( 2nd `  ( H `  k ) )  =  ( 2nd `  ( F `  m )
) )
141140breq2d 4402 . . . . . . . . . . . . 13  |-  ( ( H `  k )  =  ( F `  m )  ->  (
z  <  ( 2nd `  ( H `  k
) )  <->  z  <  ( 2nd `  ( F `
 m ) ) ) )
142139, 141anbi12d 710 . . . . . . . . . . . 12  |-  ( ( H `  k )  =  ( F `  m )  ->  (
( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) )  <->  ( ( 1st `  ( F `  m ) )  < 
z  /\  z  <  ( 2nd `  ( F `
 m ) ) ) ) )
143142biimprcd 225 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( F `  m )
)  <  z  /\  z  <  ( 2nd `  ( F `  m )
) )  ->  (
( H `  k
)  =  ( F `
 m )  -> 
( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
144143reximdv 2923 . . . . . . . . . 10  |-  ( ( ( 1st `  ( F `  m )
)  <  z  /\  z  <  ( 2nd `  ( F `  m )
) )  ->  ( E. k  e.  NN  ( H `  k )  =  ( F `  m )  ->  E. k  e.  NN  ( ( 1st `  ( H `  k
) )  <  z  /\  z  <  ( 2nd `  ( H `  k
) ) ) ) )
145137, 144syl5com 30 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( 1st `  ( F `  m )
)  <  z  /\  z  <  ( 2nd `  ( F `  m )
) )  ->  E. k  e.  NN  ( ( 1st `  ( H `  k
) )  <  z  /\  z  <  ( 2nd `  ( H `  k
) ) ) ) )
146145rexlimdva 2937 . . . . . . . 8  |-  ( ph  ->  ( E. m  e.  NN  ( ( 1st `  ( F `  m
) )  <  z  /\  z  <  ( 2nd `  ( F `  m
) ) )  ->  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
147146ralimdv 2826 . . . . . . 7  |-  ( ph  ->  ( A. z  e.  A  E. m  e.  NN  ( ( 1st `  ( F `  m
) )  <  z  /\  z  <  ( 2nd `  ( F `  m
) ) )  ->  A. z  e.  A  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
148 ovolfioo 21067 . . . . . . . 8  |-  ( ( A  C_  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A  C_  U. ran  ( (,)  o.  F )  <->  A. z  e.  A  E. m  e.  NN  ( ( 1st `  ( F `  m )
)  <  z  /\  z  <  ( 2nd `  ( F `  m )
) ) ) )
1492, 21, 148syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( A  C_  U. ran  ( (,)  o.  F )  <->  A. z  e.  A  E. m  e.  NN  ( ( 1st `  ( F `  m )
)  <  z  /\  z  <  ( 2nd `  ( F `  m )
) ) ) )
150 ovolfioo 21067 . . . . . . . 8  |-  ( ( A  C_  RR  /\  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A  C_  U. ran  ( (,)  o.  H )  <->  A. z  e.  A  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
1512, 27, 150syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( A  C_  U. ran  ( (,)  o.  H )  <->  A. z  e.  A  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
152147, 149, 1513imtr4d 268 . . . . . 6  |-  ( ph  ->  ( A  C_  U. ran  ( (,)  o.  F )  ->  A  C_  U. ran  ( (,)  o.  H ) ) )
15365, 152mpd 15 . . . . 5  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  H ) )
154 oveq1 6197 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( 2  x.  m )  ->  (
n  /  2 )  =  ( ( 2  x.  m )  / 
2 ) )
155154eleq1d 2520 . . . . . . . . . . . . . . 15  |-  ( n  =  ( 2  x.  m )  ->  (
( n  /  2
)  e.  NN  <->  ( (
2  x.  m )  /  2 )  e.  NN ) )
156154fveq2d 5793 . . . . . . . . . . . . . . 15  |-  ( n  =  ( 2  x.  m )  ->  ( G `  ( n  /  2 ) )  =  ( G `  ( ( 2  x.  m )  /  2
) ) )
157 oveq1 6197 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( 2  x.  m )  ->  (
n  +  1 )  =  ( ( 2  x.  m )  +  1 ) )
158157oveq1d 6205 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( 2  x.  m )  ->  (
( n  +  1 )  /  2 )  =  ( ( ( 2  x.  m )  +  1 )  / 
2 ) )
159158fveq2d 5793 . . . . . . . . . . . . . . 15  |-  ( n  =  ( 2  x.  m )  ->  ( F `  ( (
n  +  1 )  /  2 ) )  =  ( F `  ( ( ( 2  x.  m )  +  1 )  /  2
) ) )
160155, 156, 159ifbieq12d 3914 . . . . . . . . . . . . . 14  |-  ( n  =  ( 2  x.  m )  ->  if ( ( n  / 
2 )  e.  NN ,  ( G `  ( n  /  2
) ) ,  ( F `  ( ( n  +  1 )  /  2 ) ) )  =  if ( ( ( 2  x.  m )  /  2
)  e.  NN , 
( G `  (
( 2  x.  m
)  /  2 ) ) ,  ( F `
 ( ( ( 2  x.  m )  +  1 )  / 
2 ) ) ) )
161 fvex 5799 . . . . . . . . . . . . . . 15  |-  ( G `
 ( ( 2  x.  m )  / 
2 ) )  e. 
_V
162 fvex 5799 . . . . . . . . . . . . . . 15  |-  ( F `
 ( ( ( 2  x.  m )  +  1 )  / 
2 ) )  e. 
_V
163161, 162ifex 3956 . . . . . . . . . . . . . 14  |-  if ( ( ( 2  x.  m )  /  2
)  e.  NN , 
( G `  (
( 2  x.  m
)  /  2 ) ) ,  ( F `
 ( ( ( 2  x.  m )  +  1 )  / 
2 ) ) )  e.  _V
164160, 26, 163fvmpt 5873 . . . . . . . . . . . . 13  |-  ( ( 2  x.  m )  e.  NN  ->  ( H `  ( 2  x.  m ) )  =  if ( ( ( 2  x.  m )  /  2 )  e.  NN ,  ( G `
 ( ( 2  x.  m )  / 
2 ) ) ,  ( F `  (
( ( 2  x.  m )  +  1 )  /  2 ) ) ) )
165114, 164syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( H `
 ( 2  x.  m ) )  =  if ( ( ( 2  x.  m )  /  2 )  e.  NN ,  ( G `
 ( ( 2  x.  m )  / 
2 ) ) ,  ( F `  (
( ( 2  x.  m )  +  1 )  /  2 ) ) ) )
166123, 94eqeltrd 2539 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 2  x.  m )  /  2 )  e.  NN )
167 iftrue 3895 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  m
)  /  2 )  e.  NN  ->  if ( ( ( 2  x.  m )  / 
2 )  e.  NN ,  ( G `  ( ( 2  x.  m )  /  2
) ) ,  ( F `  ( ( ( 2  x.  m
)  +  1 )  /  2 ) ) )  =  ( G `
 ( ( 2  x.  m )  / 
2 ) ) )
168166, 167syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  if ( ( ( 2  x.  m )  /  2
)  e.  NN , 
( G `  (
( 2  x.  m
)  /  2 ) ) ,  ( F `
 ( ( ( 2  x.  m )  +  1 )  / 
2 ) ) )  =  ( G `  ( ( 2  x.  m )  /  2
) ) )
169123fveq2d 5793 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( G `
 ( ( 2  x.  m )  / 
2 ) )  =  ( G `  m
) )
170165, 168, 1693eqtrd 2496 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( H `
 ( 2  x.  m ) )  =  ( G `  m
) )
171 fveq2 5789 . . . . . . . . . . . . 13  |-  ( k  =  ( 2  x.  m )  ->  ( H `  k )  =  ( H `  ( 2  x.  m
) ) )
172171eqeq1d 2453 . . . . . . . . . . . 12  |-  ( k  =  ( 2  x.  m )  ->  (
( H `  k
)  =  ( G `
 m )  <->  ( H `  ( 2  x.  m
) )  =  ( G `  m ) ) )
173172rspcev 3169 . . . . . . . . . . 11  |-  ( ( ( 2  x.  m
)  e.  NN  /\  ( H `  ( 2  x.  m ) )  =  ( G `  m ) )  ->  E. k  e.  NN  ( H `  k )  =  ( G `  m ) )
174114, 170, 173syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  E. k  e.  NN  ( H `  k )  =  ( G `  m ) )
175 fveq2 5789 . . . . . . . . . . . . . 14  |-  ( ( H `  k )  =  ( G `  m )  ->  ( 1st `  ( H `  k ) )  =  ( 1st `  ( G `  m )
) )
176175breq1d 4400 . . . . . . . . . . . . 13  |-  ( ( H `  k )  =  ( G `  m )  ->  (
( 1st `  ( H `  k )
)  <  z  <->  ( 1st `  ( G `  m
) )  <  z
) )
177 fveq2 5789 . . . . . . . . . . . . . 14  |-  ( ( H `  k )  =  ( G `  m )  ->  ( 2nd `  ( H `  k ) )  =  ( 2nd `  ( G `  m )
) )
178177breq2d 4402 . . . . . . . . . . . . 13  |-  ( ( H `  k )  =  ( G `  m )  ->  (
z  <  ( 2nd `  ( H `  k
) )  <->  z  <  ( 2nd `  ( G `
 m ) ) ) )
179176, 178anbi12d 710 . . . . . . . . . . . 12  |-  ( ( H `  k )  =  ( G `  m )  ->  (
( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) )  <->  ( ( 1st `  ( G `  m ) )  < 
z  /\  z  <  ( 2nd `  ( G `
 m ) ) ) ) )
180179biimprcd 225 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( G `  m )
)  <  z  /\  z  <  ( 2nd `  ( G `  m )
) )  ->  (
( H `  k
)  =  ( G `
 m )  -> 
( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
181180reximdv 2923 . . . . . . . . . 10  |-  ( ( ( 1st `  ( G `  m )
)  <  z  /\  z  <  ( 2nd `  ( G `  m )
) )  ->  ( E. k  e.  NN  ( H `  k )  =  ( G `  m )  ->  E. k  e.  NN  ( ( 1st `  ( H `  k
) )  <  z  /\  z  <  ( 2nd `  ( H `  k
) ) ) ) )
182174, 181syl5com 30 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( 1st `  ( G `  m )
)  <  z  /\  z  <  ( 2nd `  ( G `  m )
) )  ->  E. k  e.  NN  ( ( 1st `  ( H `  k
) )  <  z  /\  z  <  ( 2nd `  ( H `  k
) ) ) ) )
183182rexlimdva 2937 . . . . . . . 8  |-  ( ph  ->  ( E. m  e.  NN  ( ( 1st `  ( G `  m
) )  <  z  /\  z  <  ( 2nd `  ( G `  m
) ) )  ->  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
184183ralimdv 2826 . . . . . . 7  |-  ( ph  ->  ( A. z  e.  B  E. m  e.  NN  ( ( 1st `  ( G `  m
) )  <  z  /\  z  <  ( 2nd `  ( G `  m
) ) )  ->  A. z  e.  B  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
185 ovolfioo 21067 . . . . . . . 8  |-  ( ( B  C_  RR  /\  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( B  C_  U. ran  ( (,)  o.  G )  <->  A. z  e.  B  E. m  e.  NN  ( ( 1st `  ( G `  m )
)  <  z  /\  z  <  ( 2nd `  ( G `  m )
) ) ) )
1864, 12, 185syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( B  C_  U. ran  ( (,)  o.  G )  <->  A. z  e.  B  E. m  e.  NN  ( ( 1st `  ( G `  m )
)  <  z  /\  z  <  ( 2nd `  ( G `  m )
) ) ) )
187 ovolfioo 21067 . . . . . . . 8  |-  ( ( B  C_  RR  /\  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( B  C_  U. ran  ( (,)  o.  H )  <->  A. z  e.  B  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
1884, 27, 187syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( B  C_  U. ran  ( (,)  o.  H )  <->  A. z  e.  B  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
189184, 186, 1883imtr4d 268 . . . . . 6  |-  ( ph  ->  ( B  C_  U. ran  ( (,)  o.  G )  ->  B  C_  U. ran  ( (,)  o.  H ) ) )
19067, 189mpd 15 . . . . 5  |-  ( ph  ->  B  C_  U. ran  ( (,)  o.  H ) )
191153, 190unssd 3630 . . . 4  |-  ( ph  ->  ( A  u.  B
)  C_  U. ran  ( (,)  o.  H ) )
19229ovollb 21078 . . . 4  |-  ( ( H : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  ( A  u.  B )  C_ 
U. ran  ( (,)  o.  H ) )  -> 
( vol* `  ( A  u.  B
) )  <_  sup ( ran  U ,  RR* ,  <  ) )
19327, 191, 192syl2anc 661 . . 3  |-  ( ph  ->  ( vol* `  ( A  u.  B
) )  <_  sup ( ran  U ,  RR* ,  <  ) )
194 ovollecl 21082 . . 3  |-  ( ( ( A  u.  B
)  C_  RR  /\  sup ( ran  U ,  RR* ,  <  )  e.  RR  /\  ( vol* `  ( A  u.  B
) )  <_  sup ( ran  U ,  RR* ,  <  ) )  -> 
( vol* `  ( A  u.  B
) )  e.  RR )
1955, 85, 193, 194syl3anc 1219 . 2  |-  ( ph  ->  ( vol* `  ( A  u.  B
) )  e.  RR )
19662rexrd 9534 . . . 4  |-  ( ph  ->  ( ( ( vol* `  A )  +  ( vol* `  B ) )  +  C )  e.  RR* )
197 supxrleub 11390 . . . 4  |-  ( ( ran  U  C_  RR*  /\  (
( ( vol* `  A )  +  ( vol* `  B
) )  +  C
)  e.  RR* )  ->  ( sup ( ran 
U ,  RR* ,  <  )  <_  ( ( ( vol* `  A
)  +  ( vol* `  B )
)  +  C )  <->  A. z  e.  ran  U  z  <_  ( (
( vol* `  A )  +  ( vol* `  B
) )  +  C
) ) )
19880, 196, 197syl2anc 661 . . 3  |-  ( ph  ->  ( sup ( ran 
U ,  RR* ,  <  )  <_  ( ( ( vol* `  A
)  +  ( vol* `  B )
)  +  C )  <->  A. z  e.  ran  U  z  <_  ( (
( vol* `  A )  +  ( vol* `  B
) )  +  C
) ) )
19974, 198mpbird 232 . 2  |-  ( ph  ->  sup ( ran  U ,  RR* ,  <  )  <_  ( ( ( vol* `  A )  +  ( vol* `  B ) )  +  C ) )
200195, 85, 62, 193, 199letrd 9629 1  |-  ( ph  ->  ( vol* `  ( A  u.  B
) )  <_  (
( ( vol* `  A )  +  ( vol* `  B
) )  +  C
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796    u. cun 3424    i^i cin 3425    C_ wss 3426   (/)c0 3735   ifcif 3889   U.cuni 4189   class class class wbr 4390    |-> cmpt 4448    X. cxp 4936   dom cdm 4938   ran crn 4939    o. ccom 4942    Fn wfn 5511   -->wf 5512   ` cfv 5516  (class class class)co 6190   1stc1st 6675   2ndc2nd 6676    ^m cmap 7314   supcsup 7791   CCcc 9381   RRcr 9382   0cc0 9383   1c1 9384    + caddc 9386    x. cmul 9388   +oocpnf 9516   RR*cxr 9518    < clt 9519    <_ cle 9520    - cmin 9696    / cdiv 10094   NNcn 10423   2c2 10472   NN0cn0 10680   ZZcz 10747   ZZ>=cuz 10962   RR+crp 11092   (,)cioo 11401   [,)cico 11403    seqcseq 11907   abscabs 12825   vol*covol 21062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460  ax-pre-sup 9461
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-er 7201  df-map 7316  df-en 7411  df-dom 7412  df-sdom 7413  df-sup 7792  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-div 10095  df-nn 10424  df-2 10481  df-3 10482  df-n0 10681  df-z 10748  df-uz 10963  df-rp 11093  df-ioo 11405  df-ico 11407  df-fz 11539  df-fl 11743  df-seq 11908  df-exp 11967  df-cj 12690  df-re 12691  df-im 12692  df-sqr 12826  df-abs 12827  df-ovol 21064
This theorem is referenced by:  ovolunlem2  21097
  Copyright terms: Public domain W3C validator