MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolshftlem1 Unicode version

Theorem ovolshftlem1 19358
Description: Lemma for ovolshft 19360. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolshft.1  |-  ( ph  ->  A  C_  RR )
ovolshft.2  |-  ( ph  ->  C  e.  RR )
ovolshft.3  |-  ( ph  ->  B  =  { x  e.  RR  |  ( x  -  C )  e.  A } )
ovolshft.4  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
ovolshft.5  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
ovolshft.6  |-  G  =  ( n  e.  NN  |->  <. ( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >. )
ovolshft.7  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
ovolshft.8  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  F ) )
Assertion
Ref Expression
ovolshftlem1  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  e.  M )
Distinct variable groups:    f, n, x, y, A    C, f, n, x, y    n, F, x    f, G, n, y    B, f, n, y    ph, f, n, y
Allowed substitution hints:    ph( x)    B( x)    S( x, y, f, n)    F( y, f)    G( x)    M( x, y, f, n)

Proof of Theorem ovolshftlem1
StepHypRef Expression
1 ovolshft.7 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2 ovolfcl 19316 . . . . . . . . . . . . . 14  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( 1st `  ( F `  n ) )  <_ 
( 2nd `  ( F `  n )
) ) )
31, 2sylan 458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  e.  RR  /\  ( 2nd `  ( F `  n ) )  e.  RR  /\  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) ) )
43simp1d 969 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  e.  RR )
53simp2d 970 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  e.  RR )
6 ovolshft.2 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  RR )
76adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  C  e.  RR )
83simp3d 971 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) )
94, 5, 7, 8leadd1dd 9596 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  +  C )  <_ 
( ( 2nd `  ( F `  n )
)  +  C ) )
10 df-br 4173 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( F `  n )
)  +  C )  <_  ( ( 2nd `  ( F `  n
) )  +  C
)  <->  <. ( ( 1st `  ( F `  n
) )  +  C
) ,  ( ( 2nd `  ( F `
 n ) )  +  C ) >.  e.  <_  )
119, 10sylib 189 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  <_  )
124, 7readdcld 9071 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  +  C )  e.  RR )
135, 7readdcld 9071 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( F `
 n ) )  +  C )  e.  RR )
14 opelxp 4867 . . . . . . . . . . 11  |-  ( <.
( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  ( RR 
X.  RR )  <->  ( (
( 1st `  ( F `  n )
)  +  C )  e.  RR  /\  (
( 2nd `  ( F `  n )
)  +  C )  e.  RR ) )
1512, 13, 14sylanbrc 646 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  ( RR 
X.  RR ) )
16 elin 3490 . . . . . . . . . 10  |-  ( <.
( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  (  <_  i^i  ( RR  X.  RR ) )  <->  ( <. ( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  <_  /\  <. ( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  ( RR 
X.  RR ) ) )
1711, 15, 16sylanbrc 646 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  (  <_  i^i  ( RR  X.  RR ) ) )
18 ovolshft.6 . . . . . . . . 9  |-  G  =  ( n  e.  NN  |->  <. ( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >. )
1917, 18fmptd 5852 . . . . . . . 8  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
20 eqid 2404 . . . . . . . . 9  |-  ( ( abs  o.  -  )  o.  G )  =  ( ( abs  o.  -  )  o.  G )
2120ovolfsf 19321 . . . . . . . 8  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  G ) : NN --> ( 0 [,)  +oo ) )
22 ffn 5550 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  o.  G ) : NN --> ( 0 [,) 
+oo )  ->  (
( abs  o.  -  )  o.  G )  Fn  NN )
2319, 21, 223syl 19 . . . . . . 7  |-  ( ph  ->  ( ( abs  o.  -  )  o.  G
)  Fn  NN )
24 eqid 2404 . . . . . . . . 9  |-  ( ( abs  o.  -  )  o.  F )  =  ( ( abs  o.  -  )  o.  F )
2524ovolfsf 19321 . . . . . . . 8  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  F ) : NN --> ( 0 [,)  +oo ) )
26 ffn 5550 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  o.  F ) : NN --> ( 0 [,) 
+oo )  ->  (
( abs  o.  -  )  o.  F )  Fn  NN )
271, 25, 263syl 19 . . . . . . 7  |-  ( ph  ->  ( ( abs  o.  -  )  o.  F
)  Fn  NN )
28 opex 4387 . . . . . . . . . . . . . 14  |-  <. (
( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  _V
2918fvmpt2 5771 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  <.
( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  _V )  ->  ( G `  n
)  =  <. (
( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >. )
3028, 29mpan2 653 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  ( G `  n )  =  <. ( ( 1st `  ( F `  n
) )  +  C
) ,  ( ( 2nd `  ( F `
 n ) )  +  C ) >.
)
3130fveq2d 5691 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  ( 2nd `  ( G `  n ) )  =  ( 2nd `  <. ( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >. ) )
32 ovex 6065 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( F `
 n ) )  +  C )  e. 
_V
33 ovex 6065 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( F `
 n ) )  +  C )  e. 
_V
3432, 33op2nd 6315 . . . . . . . . . . . 12  |-  ( 2nd `  <. ( ( 1st `  ( F `  n
) )  +  C
) ,  ( ( 2nd `  ( F `
 n ) )  +  C ) >.
)  =  ( ( 2nd `  ( F `
 n ) )  +  C )
3531, 34syl6eq 2452 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  ( 2nd `  ( G `  n ) )  =  ( ( 2nd `  ( F `  n )
)  +  C ) )
3630fveq2d 5691 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  ( 1st `  ( G `  n ) )  =  ( 1st `  <. ( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >. ) )
3732, 33op1st 6314 . . . . . . . . . . . 12  |-  ( 1st `  <. ( ( 1st `  ( F `  n
) )  +  C
) ,  ( ( 2nd `  ( F `
 n ) )  +  C ) >.
)  =  ( ( 1st `  ( F `
 n ) )  +  C )
3836, 37syl6eq 2452 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  ( 1st `  ( G `  n ) )  =  ( ( 1st `  ( F `  n )
)  +  C ) )
3935, 38oveq12d 6058 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
( 2nd `  ( G `  n )
)  -  ( 1st `  ( G `  n
) ) )  =  ( ( ( 2nd `  ( F `  n
) )  +  C
)  -  ( ( 1st `  ( F `
 n ) )  +  C ) ) )
4039adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( G `
 n ) )  -  ( 1st `  ( G `  n )
) )  =  ( ( ( 2nd `  ( F `  n )
)  +  C )  -  ( ( 1st `  ( F `  n
) )  +  C
) ) )
415recnd 9070 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  e.  CC )
424recnd 9070 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  e.  CC )
437recnd 9070 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  C  e.  CC )
4441, 42, 43pnpcan2d 9405 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( 2nd `  ( F `  n )
)  +  C )  -  ( ( 1st `  ( F `  n
) )  +  C
) )  =  ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) ) )
4540, 44eqtrd 2436 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( G `
 n ) )  -  ( 1st `  ( G `  n )
) )  =  ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) ) )
4620ovolfsval 19320 . . . . . . . . 9  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  G
) `  n )  =  ( ( 2nd `  ( G `  n
) )  -  ( 1st `  ( G `  n ) ) ) )
4719, 46sylan 458 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  =  ( ( 2nd `  ( G `  n )
)  -  ( 1st `  ( G `  n
) ) ) )
4824ovolfsval 19320 . . . . . . . . 9  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  F
) `  n )  =  ( ( 2nd `  ( F `  n
) )  -  ( 1st `  ( F `  n ) ) ) )
491, 48sylan 458 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  F ) `  n )  =  ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) ) )
5045, 47, 493eqtr4d 2446 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  =  ( ( ( abs  o.  -  )  o.  F
) `  n )
)
5123, 27, 50eqfnfvd 5789 . . . . . 6  |-  ( ph  ->  ( ( abs  o.  -  )  o.  G
)  =  ( ( abs  o.  -  )  o.  F ) )
5251seqeq3d 11286 . . . . 5  |-  ( ph  ->  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) ) )
53 ovolshft.5 . . . . 5  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
5452, 53syl6eqr 2454 . . . 4  |-  ( ph  ->  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )  =  S )
5554rneqd 5056 . . 3  |-  ( ph  ->  ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  G ) )  =  ran  S )
5655supeq1d 7409 . 2  |-  ( ph  ->  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) ,  RR* ,  <  )  =  sup ( ran  S ,  RR* ,  <  ) )
57 ovolshft.3 . . . . . . . . 9  |-  ( ph  ->  B  =  { x  e.  RR  |  ( x  -  C )  e.  A } )
5857eleq2d 2471 . . . . . . . 8  |-  ( ph  ->  ( y  e.  B  <->  y  e.  { x  e.  RR  |  ( x  -  C )  e.  A } ) )
59 oveq1 6047 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  -  C )  =  ( y  -  C ) )
6059eleq1d 2470 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  -  C
)  e.  A  <->  ( y  -  C )  e.  A
) )
6160elrab 3052 . . . . . . . 8  |-  ( y  e.  { x  e.  RR  |  ( x  -  C )  e.  A }  <->  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )
6258, 61syl6bb 253 . . . . . . 7  |-  ( ph  ->  ( y  e.  B  <->  ( y  e.  RR  /\  ( y  -  C
)  e.  A ) ) )
6362biimpa 471 . . . . . 6  |-  ( (
ph  /\  y  e.  B )  ->  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )
64 simprr 734 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )  -> 
( y  -  C
)  e.  A )
65 ovolshft.8 . . . . . . . . . 10  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  F ) )
66 ovolshft.1 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  RR )
67 ovolfioo 19317 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A  C_  U. ran  ( (,)  o.  F )  <->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) ) )
6866, 1, 67syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  ( A  C_  U. ran  ( (,)  o.  F )  <->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) ) )
6965, 68mpbid 202 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) )
7069adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )  ->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) )
71 breq2 4176 . . . . . . . . . . 11  |-  ( x  =  ( y  -  C )  ->  (
( 1st `  ( F `  n )
)  <  x  <->  ( 1st `  ( F `  n
) )  <  (
y  -  C ) ) )
72 breq1 4175 . . . . . . . . . . 11  |-  ( x  =  ( y  -  C )  ->  (
x  <  ( 2nd `  ( F `  n
) )  <->  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) )
7371, 72anbi12d 692 . . . . . . . . . 10  |-  ( x  =  ( y  -  C )  ->  (
( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  <->  ( ( 1st `  ( F `  n ) )  < 
( y  -  C
)  /\  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) ) )
7473rexbidv 2687 . . . . . . . . 9  |-  ( x  =  ( y  -  C )  ->  ( E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  <->  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  (
y  -  C )  /\  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) ) )
7574rspcv 3008 . . . . . . . 8  |-  ( ( y  -  C )  e.  A  ->  ( A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  (
y  -  C )  /\  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) ) )
7664, 70, 75sylc 58 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )  ->  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  ( y  -  C )  /\  (
y  -  C )  <  ( 2nd `  ( F `  n )
) ) )
7738adantl 453 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  ( 1st `  ( G `  n ) )  =  ( ( 1st `  ( F `  n )
)  +  C ) )
7877breq1d 4182 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
( 1st `  ( G `  n )
)  <  y  <->  ( ( 1st `  ( F `  n ) )  +  C )  <  y
) )
794adantlr 696 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  ( 1st `  ( F `  n ) )  e.  RR )
806ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  C  e.  RR )
81 simplrl 737 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  y  e.  RR )
8279, 80, 81ltaddsubd 9582 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
( ( 1st `  ( F `  n )
)  +  C )  <  y  <->  ( 1st `  ( F `  n
) )  <  (
y  -  C ) ) )
8378, 82bitrd 245 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
( 1st `  ( G `  n )
)  <  y  <->  ( 1st `  ( F `  n
) )  <  (
y  -  C ) ) )
8435adantl 453 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n ) )  =  ( ( 2nd `  ( F `  n )
)  +  C ) )
8584breq2d 4184 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
y  <  ( 2nd `  ( G `  n
) )  <->  y  <  ( ( 2nd `  ( F `  n )
)  +  C ) ) )
865adantlr 696 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n ) )  e.  RR )
8781, 80, 86ltsubaddd 9578 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
( y  -  C
)  <  ( 2nd `  ( F `  n
) )  <->  y  <  ( ( 2nd `  ( F `  n )
)  +  C ) ) )
8885, 87bitr4d 248 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
y  <  ( 2nd `  ( G `  n
) )  <->  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) )
8983, 88anbi12d 692 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) )  <->  ( ( 1st `  ( F `  n ) )  < 
( y  -  C
)  /\  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) ) )
9089rexbidva 2683 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )  -> 
( E. n  e.  NN  ( ( 1st `  ( G `  n
) )  <  y  /\  y  <  ( 2nd `  ( G `  n
) ) )  <->  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  (
y  -  C )  /\  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) ) )
9176, 90mpbird 224 . . . . . 6  |-  ( (
ph  /\  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )  ->  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) )
9263, 91syldan 457 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  E. n  e.  NN  ( ( 1st `  ( G `  n
) )  <  y  /\  y  <  ( 2nd `  ( G `  n
) ) ) )
9392ralrimiva 2749 . . . 4  |-  ( ph  ->  A. y  e.  B  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) )
94 ssrab2 3388 . . . . . 6  |-  { x  e.  RR  |  ( x  -  C )  e.  A }  C_  RR
9557, 94syl6eqss 3358 . . . . 5  |-  ( ph  ->  B  C_  RR )
96 ovolfioo 19317 . . . . 5  |-  ( ( B  C_  RR  /\  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( B  C_  U. ran  ( (,)  o.  G )  <->  A. y  e.  B  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) ) )
9795, 19, 96syl2anc 643 . . . 4  |-  ( ph  ->  ( B  C_  U. ran  ( (,)  o.  G )  <->  A. y  e.  B  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) ) )
9893, 97mpbird 224 . . 3  |-  ( ph  ->  B  C_  U. ran  ( (,)  o.  G ) )
99 ovolshft.4 . . . 4  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
100 eqid 2404 . . . 4  |-  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  G )
)  =  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  G )
)
10199, 100elovolmr 19325 . . 3  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  B  C_ 
U. ran  ( (,)  o.  G ) )  ->  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  G )
) ,  RR* ,  <  )  e.  M )
10219, 98, 101syl2anc 643 . 2  |-  ( ph  ->  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) ,  RR* ,  <  )  e.  M
)
10356, 102eqeltrrd 2479 1  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  e.  M )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   {crab 2670   _Vcvv 2916    i^i cin 3279    C_ wss 3280   <.cop 3777   U.cuni 3975   class class class wbr 4172    e. cmpt 4226    X. cxp 4835   ran crn 4838    o. ccom 4841    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040   1stc1st 6306   2ndc2nd 6307    ^m cmap 6977   supcsup 7403   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    +oocpnf 9073   RR*cxr 9075    < clt 9076    <_ cle 9077    - cmin 9247   NNcn 9956   (,)cioo 10872   [,)cico 10874    seq cseq 11278   abscabs 11994
This theorem is referenced by:  ovolshftlem2  19359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-ioo 10876  df-ico 10878  df-fz 11000  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996
  Copyright terms: Public domain W3C validator