MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolshftlem1 Structured version   Unicode version

Theorem ovolshftlem1 20951
Description: Lemma for ovolshft 20953. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolshft.1  |-  ( ph  ->  A  C_  RR )
ovolshft.2  |-  ( ph  ->  C  e.  RR )
ovolshft.3  |-  ( ph  ->  B  =  { x  e.  RR  |  ( x  -  C )  e.  A } )
ovolshft.4  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
ovolshft.5  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
ovolshft.6  |-  G  =  ( n  e.  NN  |->  <. ( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >. )
ovolshft.7  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
ovolshft.8  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  F ) )
Assertion
Ref Expression
ovolshftlem1  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  e.  M )
Distinct variable groups:    f, n, x, y, A    C, f, n, x, y    n, F, x    f, G, n, y    B, f, n, y    ph, f, n, y
Allowed substitution hints:    ph( x)    B( x)    S( x, y, f, n)    F( y, f)    G( x)    M( x, y, f, n)

Proof of Theorem ovolshftlem1
StepHypRef Expression
1 ovolshft.7 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2 ovolfcl 20909 . . . . . . . . . . . . . 14  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( 1st `  ( F `  n ) )  <_ 
( 2nd `  ( F `  n )
) ) )
31, 2sylan 468 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  e.  RR  /\  ( 2nd `  ( F `  n ) )  e.  RR  /\  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) ) )
43simp1d 995 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  e.  RR )
53simp2d 996 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  e.  RR )
6 ovolshft.2 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  RR )
76adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  C  e.  RR )
83simp3d 997 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) )
94, 5, 7, 8leadd1dd 9949 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  +  C )  <_ 
( ( 2nd `  ( F `  n )
)  +  C ) )
10 df-br 4290 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( F `  n )
)  +  C )  <_  ( ( 2nd `  ( F `  n
) )  +  C
)  <->  <. ( ( 1st `  ( F `  n
) )  +  C
) ,  ( ( 2nd `  ( F `
 n ) )  +  C ) >.  e.  <_  )
119, 10sylib 196 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  <_  )
124, 7readdcld 9409 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  +  C )  e.  RR )
135, 7readdcld 9409 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( F `
 n ) )  +  C )  e.  RR )
14 opelxp 4865 . . . . . . . . . . 11  |-  ( <.
( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  ( RR 
X.  RR )  <->  ( (
( 1st `  ( F `  n )
)  +  C )  e.  RR  /\  (
( 2nd `  ( F `  n )
)  +  C )  e.  RR ) )
1512, 13, 14sylanbrc 659 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  ( RR 
X.  RR ) )
1611, 15elind 3537 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  (  <_  i^i  ( RR  X.  RR ) ) )
17 ovolshft.6 . . . . . . . . 9  |-  G  =  ( n  e.  NN  |->  <. ( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >. )
1816, 17fmptd 5864 . . . . . . . 8  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
19 eqid 2441 . . . . . . . . 9  |-  ( ( abs  o.  -  )  o.  G )  =  ( ( abs  o.  -  )  o.  G )
2019ovolfsf 20914 . . . . . . . 8  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  G ) : NN --> ( 0 [,) +oo ) )
21 ffn 5556 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  o.  G ) : NN --> ( 0 [,) +oo )  ->  ( ( abs  o.  -  )  o.  G )  Fn  NN )
2218, 20, 213syl 20 . . . . . . 7  |-  ( ph  ->  ( ( abs  o.  -  )  o.  G
)  Fn  NN )
23 eqid 2441 . . . . . . . . 9  |-  ( ( abs  o.  -  )  o.  F )  =  ( ( abs  o.  -  )  o.  F )
2423ovolfsf 20914 . . . . . . . 8  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  F ) : NN --> ( 0 [,) +oo ) )
25 ffn 5556 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  o.  F ) : NN --> ( 0 [,) +oo )  ->  ( ( abs  o.  -  )  o.  F )  Fn  NN )
261, 24, 253syl 20 . . . . . . 7  |-  ( ph  ->  ( ( abs  o.  -  )  o.  F
)  Fn  NN )
27 opex 4553 . . . . . . . . . . . . . 14  |-  <. (
( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  _V
2817fvmpt2 5778 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  <.
( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >.  e.  _V )  ->  ( G `  n
)  =  <. (
( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >. )
2927, 28mpan2 666 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  ( G `  n )  =  <. ( ( 1st `  ( F `  n
) )  +  C
) ,  ( ( 2nd `  ( F `
 n ) )  +  C ) >.
)
3029fveq2d 5692 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  ( 2nd `  ( G `  n ) )  =  ( 2nd `  <. ( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >. ) )
31 ovex 6115 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( F `
 n ) )  +  C )  e. 
_V
32 ovex 6115 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( F `
 n ) )  +  C )  e. 
_V
3331, 32op2nd 6585 . . . . . . . . . . . 12  |-  ( 2nd `  <. ( ( 1st `  ( F `  n
) )  +  C
) ,  ( ( 2nd `  ( F `
 n ) )  +  C ) >.
)  =  ( ( 2nd `  ( F `
 n ) )  +  C )
3430, 33syl6eq 2489 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  ( 2nd `  ( G `  n ) )  =  ( ( 2nd `  ( F `  n )
)  +  C ) )
3529fveq2d 5692 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  ( 1st `  ( G `  n ) )  =  ( 1st `  <. ( ( 1st `  ( F `  n )
)  +  C ) ,  ( ( 2nd `  ( F `  n
) )  +  C
) >. ) )
3631, 32op1st 6584 . . . . . . . . . . . 12  |-  ( 1st `  <. ( ( 1st `  ( F `  n
) )  +  C
) ,  ( ( 2nd `  ( F `
 n ) )  +  C ) >.
)  =  ( ( 1st `  ( F `
 n ) )  +  C )
3735, 36syl6eq 2489 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  ( 1st `  ( G `  n ) )  =  ( ( 1st `  ( F `  n )
)  +  C ) )
3834, 37oveq12d 6108 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
( 2nd `  ( G `  n )
)  -  ( 1st `  ( G `  n
) ) )  =  ( ( ( 2nd `  ( F `  n
) )  +  C
)  -  ( ( 1st `  ( F `
 n ) )  +  C ) ) )
3938adantl 463 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( G `
 n ) )  -  ( 1st `  ( G `  n )
) )  =  ( ( ( 2nd `  ( F `  n )
)  +  C )  -  ( ( 1st `  ( F `  n
) )  +  C
) ) )
405recnd 9408 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  e.  CC )
414recnd 9408 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  e.  CC )
427recnd 9408 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  C  e.  CC )
4340, 41, 42pnpcan2d 9753 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( 2nd `  ( F `  n )
)  +  C )  -  ( ( 1st `  ( F `  n
) )  +  C
) )  =  ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) ) )
4439, 43eqtrd 2473 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( G `
 n ) )  -  ( 1st `  ( G `  n )
) )  =  ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) ) )
4519ovolfsval 20913 . . . . . . . . 9  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  G
) `  n )  =  ( ( 2nd `  ( G `  n
) )  -  ( 1st `  ( G `  n ) ) ) )
4618, 45sylan 468 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  =  ( ( 2nd `  ( G `  n )
)  -  ( 1st `  ( G `  n
) ) ) )
4723ovolfsval 20913 . . . . . . . . 9  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  F
) `  n )  =  ( ( 2nd `  ( F `  n
) )  -  ( 1st `  ( F `  n ) ) ) )
481, 47sylan 468 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  F ) `  n )  =  ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) ) )
4944, 46, 483eqtr4d 2483 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  =  ( ( ( abs  o.  -  )  o.  F
) `  n )
)
5022, 26, 49eqfnfvd 5797 . . . . . 6  |-  ( ph  ->  ( ( abs  o.  -  )  o.  G
)  =  ( ( abs  o.  -  )  o.  F ) )
5150seqeq3d 11810 . . . . 5  |-  ( ph  ->  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) ) )
52 ovolshft.5 . . . . 5  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
5351, 52syl6eqr 2491 . . . 4  |-  ( ph  ->  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )  =  S )
5453rneqd 5063 . . 3  |-  ( ph  ->  ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  G ) )  =  ran  S )
5554supeq1d 7692 . 2  |-  ( ph  ->  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) ,  RR* ,  <  )  =  sup ( ran  S ,  RR* ,  <  ) )
56 ovolshft.3 . . . . . . . . 9  |-  ( ph  ->  B  =  { x  e.  RR  |  ( x  -  C )  e.  A } )
5756eleq2d 2508 . . . . . . . 8  |-  ( ph  ->  ( y  e.  B  <->  y  e.  { x  e.  RR  |  ( x  -  C )  e.  A } ) )
58 oveq1 6097 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  -  C )  =  ( y  -  C ) )
5958eleq1d 2507 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  -  C
)  e.  A  <->  ( y  -  C )  e.  A
) )
6059elrab 3114 . . . . . . . 8  |-  ( y  e.  { x  e.  RR  |  ( x  -  C )  e.  A }  <->  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )
6157, 60syl6bb 261 . . . . . . 7  |-  ( ph  ->  ( y  e.  B  <->  ( y  e.  RR  /\  ( y  -  C
)  e.  A ) ) )
6261biimpa 481 . . . . . 6  |-  ( (
ph  /\  y  e.  B )  ->  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )
63 simprr 751 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )  -> 
( y  -  C
)  e.  A )
64 ovolshft.8 . . . . . . . . . 10  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  F ) )
65 ovolshft.1 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  RR )
66 ovolfioo 20910 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A  C_  U. ran  ( (,)  o.  F )  <->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) ) )
6765, 1, 66syl2anc 656 . . . . . . . . . 10  |-  ( ph  ->  ( A  C_  U. ran  ( (,)  o.  F )  <->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) ) )
6864, 67mpbid 210 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) )
6968adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )  ->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) )
70 breq2 4293 . . . . . . . . . . 11  |-  ( x  =  ( y  -  C )  ->  (
( 1st `  ( F `  n )
)  <  x  <->  ( 1st `  ( F `  n
) )  <  (
y  -  C ) ) )
71 breq1 4292 . . . . . . . . . . 11  |-  ( x  =  ( y  -  C )  ->  (
x  <  ( 2nd `  ( F `  n
) )  <->  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) )
7270, 71anbi12d 705 . . . . . . . . . 10  |-  ( x  =  ( y  -  C )  ->  (
( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  <->  ( ( 1st `  ( F `  n ) )  < 
( y  -  C
)  /\  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) ) )
7372rexbidv 2734 . . . . . . . . 9  |-  ( x  =  ( y  -  C )  ->  ( E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  <->  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  (
y  -  C )  /\  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) ) )
7473rspcv 3066 . . . . . . . 8  |-  ( ( y  -  C )  e.  A  ->  ( A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  (
y  -  C )  /\  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) ) )
7563, 69, 74sylc 60 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )  ->  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  ( y  -  C )  /\  (
y  -  C )  <  ( 2nd `  ( F `  n )
) ) )
7637adantl 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  ( 1st `  ( G `  n ) )  =  ( ( 1st `  ( F `  n )
)  +  C ) )
7776breq1d 4299 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
( 1st `  ( G `  n )
)  <  y  <->  ( ( 1st `  ( F `  n ) )  +  C )  <  y
) )
784adantlr 709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  ( 1st `  ( F `  n ) )  e.  RR )
796ad2antrr 720 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  C  e.  RR )
80 simplrl 754 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  y  e.  RR )
8178, 79, 80ltaddsubd 9935 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
( ( 1st `  ( F `  n )
)  +  C )  <  y  <->  ( 1st `  ( F `  n
) )  <  (
y  -  C ) ) )
8277, 81bitrd 253 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
( 1st `  ( G `  n )
)  <  y  <->  ( 1st `  ( F `  n
) )  <  (
y  -  C ) ) )
8334adantl 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n ) )  =  ( ( 2nd `  ( F `  n )
)  +  C ) )
8483breq2d 4301 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
y  <  ( 2nd `  ( G `  n
) )  <->  y  <  ( ( 2nd `  ( F `  n )
)  +  C ) ) )
855adantlr 709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n ) )  e.  RR )
8680, 79, 85ltsubaddd 9931 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
( y  -  C
)  <  ( 2nd `  ( F `  n
) )  <->  y  <  ( ( 2nd `  ( F `  n )
)  +  C ) ) )
8784, 86bitr4d 256 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
y  <  ( 2nd `  ( G `  n
) )  <->  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) )
8882, 87anbi12d 705 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( y  -  C
)  e.  A ) )  /\  n  e.  NN )  ->  (
( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) )  <->  ( ( 1st `  ( F `  n ) )  < 
( y  -  C
)  /\  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) ) )
8988rexbidva 2730 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )  -> 
( E. n  e.  NN  ( ( 1st `  ( G `  n
) )  <  y  /\  y  <  ( 2nd `  ( G `  n
) ) )  <->  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  (
y  -  C )  /\  ( y  -  C )  <  ( 2nd `  ( F `  n ) ) ) ) )
9075, 89mpbird 232 . . . . . 6  |-  ( (
ph  /\  ( y  e.  RR  /\  ( y  -  C )  e.  A ) )  ->  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) )
9162, 90syldan 467 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  E. n  e.  NN  ( ( 1st `  ( G `  n
) )  <  y  /\  y  <  ( 2nd `  ( G `  n
) ) ) )
9291ralrimiva 2797 . . . 4  |-  ( ph  ->  A. y  e.  B  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) )
93 ssrab2 3434 . . . . . 6  |-  { x  e.  RR  |  ( x  -  C )  e.  A }  C_  RR
9456, 93syl6eqss 3403 . . . . 5  |-  ( ph  ->  B  C_  RR )
95 ovolfioo 20910 . . . . 5  |-  ( ( B  C_  RR  /\  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( B  C_  U. ran  ( (,)  o.  G )  <->  A. y  e.  B  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) ) )
9694, 18, 95syl2anc 656 . . . 4  |-  ( ph  ->  ( B  C_  U. ran  ( (,)  o.  G )  <->  A. y  e.  B  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) ) )
9792, 96mpbird 232 . . 3  |-  ( ph  ->  B  C_  U. ran  ( (,)  o.  G ) )
98 ovolshft.4 . . . 4  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
99 eqid 2441 . . . 4  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  G )
)  =  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  G )
)
10098, 99elovolmr 20918 . . 3  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  B  C_ 
U. ran  ( (,)  o.  G ) )  ->  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  G )
) ,  RR* ,  <  )  e.  M )
10118, 97, 100syl2anc 656 . 2  |-  ( ph  ->  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) ,  RR* ,  <  )  e.  M
)
10255, 101eqeltrrd 2516 1  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  e.  M )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   A.wral 2713   E.wrex 2714   {crab 2717   _Vcvv 2970    i^i cin 3324    C_ wss 3325   <.cop 3880   U.cuni 4088   class class class wbr 4289    e. cmpt 4347    X. cxp 4834   ran crn 4837    o. ccom 4840    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090   1stc1st 6574   2ndc2nd 6575    ^m cmap 7210   supcsup 7686   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281   +oocpnf 9411   RR*cxr 9413    < clt 9414    <_ cle 9415    - cmin 9591   NNcn 10318   (,)cioo 11296   [,)cico 11298    seqcseq 11802   abscabs 12719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-ioo 11300  df-ico 11302  df-fz 11434  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721
This theorem is referenced by:  ovolshftlem2  20952
  Copyright terms: Public domain W3C validator