MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolshft Structured version   Unicode version

Theorem ovolshft 21749
Description: The Lebesgue outer measure function is shift-invariant. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolshft.1  |-  ( ph  ->  A  C_  RR )
ovolshft.2  |-  ( ph  ->  C  e.  RR )
ovolshft.3  |-  ( ph  ->  B  =  { x  e.  RR  |  ( x  -  C )  e.  A } )
Assertion
Ref Expression
ovolshft  |-  ( ph  ->  ( vol* `  A )  =  ( vol* `  B
) )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem ovolshft
Dummy variables  f 
g  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolshft.1 . . . . 5  |-  ( ph  ->  A  C_  RR )
2 ovolshft.2 . . . . 5  |-  ( ph  ->  C  e.  RR )
3 ovolshft.3 . . . . 5  |-  ( ph  ->  B  =  { x  e.  RR  |  ( x  -  C )  e.  A } )
4 eqid 2467 . . . . 5  |-  { z  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U.
ran  ( (,)  o.  g )  /\  z  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) }  =  { z  e. 
RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U.
ran  ( (,)  o.  g )  /\  z  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) }
51, 2, 3, 4ovolshftlem2 21748 . . . 4  |-  ( ph  ->  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }  C_  { z  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U.
ran  ( (,)  o.  g )  /\  z  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) } )
6 ssrab2 3585 . . . . . 6  |-  { x  e.  RR  |  ( x  -  C )  e.  A }  C_  RR
73, 6syl6eqss 3554 . . . . 5  |-  ( ph  ->  B  C_  RR )
82renegcld 9987 . . . . 5  |-  ( ph  -> 
-u C  e.  RR )
91, 2, 3shft2rab 21746 . . . . 5  |-  ( ph  ->  A  =  { w  e.  RR  |  ( w  -  -u C )  e.  B } )
10 eqid 2467 . . . . 5  |-  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) }  =  { y  e. 
RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) }
117, 8, 9, 10ovolshftlem2 21748 . . . 4  |-  ( ph  ->  { z  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U. ran  ( (,)  o.  g )  /\  z  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  g ) ) , 
RR* ,  <  ) ) }  C_  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } )
125, 11eqssd 3521 . . 3  |-  ( ph  ->  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }  =  { z  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U.
ran  ( (,)  o.  g )  /\  z  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) } )
1312supeq1d 7907 . 2  |-  ( ph  ->  sup ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } ,  RR* ,  `'  <  )  =  sup ( { z  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U.
ran  ( (,)  o.  g )  /\  z  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) } ,  RR* ,  `'  <  ) )
1410ovolval 21712 . . 3  |-  ( A 
C_  RR  ->  ( vol* `  A )  =  sup ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } ,  RR* ,  `'  <  ) )
151, 14syl 16 . 2  |-  ( ph  ->  ( vol* `  A )  =  sup ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) } ,  RR* ,  `'  <  ) )
164ovolval 21712 . . 3  |-  ( B 
C_  RR  ->  ( vol* `  B )  =  sup ( { z  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U.
ran  ( (,)  o.  g )  /\  z  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) } ,  RR* ,  `'  <  ) )
177, 16syl 16 . 2  |-  ( ph  ->  ( vol* `  B )  =  sup ( { z  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U. ran  ( (,)  o.  g )  /\  z  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  g ) ) , 
RR* ,  <  ) ) } ,  RR* ,  `'  <  ) )
1813, 15, 173eqtr4d 2518 1  |-  ( ph  ->  ( vol* `  A )  =  ( vol* `  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   E.wrex 2815   {crab 2818    i^i cin 3475    C_ wss 3476   U.cuni 4245    X. cxp 4997   `'ccnv 4998   ran crn 5000    o. ccom 5003   ` cfv 5588  (class class class)co 6285    ^m cmap 7421   supcsup 7901   RRcr 9492   1c1 9494    + caddc 9496   RR*cxr 9628    < clt 9629    <_ cle 9630    - cmin 9806   -ucneg 9807   NNcn 10537   (,)cioo 11530    seqcseq 12076   abscabs 13033   vol*covol 21701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-pre-sup 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-er 7312  df-map 7423  df-en 7518  df-dom 7519  df-sdom 7520  df-sup 7902  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11084  df-rp 11222  df-ioo 11534  df-ico 11536  df-fz 11674  df-seq 12077  df-exp 12136  df-cj 12898  df-re 12899  df-im 12900  df-sqrt 13034  df-abs 13035  df-ovol 21703
This theorem is referenced by:  shftmbl  21776  vitalilem4  21847
  Copyright terms: Public domain W3C validator