MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolmge0 Structured version   Visualization version   Unicode version

Theorem ovolmge0 22508
Description: The set  M is composed of nonnegative extended real numbers. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
ovolval.1  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
Assertion
Ref Expression
ovolmge0  |-  ( B  e.  M  ->  0  <_  B )
Distinct variable groups:    y, f, A    B, f, y
Allowed substitution hints:    M( y, f)

Proof of Theorem ovolmge0
StepHypRef Expression
1 ovolval.1 . . 3  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
21elovolm 22506 . 2  |-  ( B  e.  M  <->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  B  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) )
3 reex 9648 . . . . . . . . 9  |-  RR  e.  _V
43, 3xpex 6614 . . . . . . . 8  |-  ( RR 
X.  RR )  e. 
_V
54inex2 4538 . . . . . . 7  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
6 nnex 10637 . . . . . . 7  |-  NN  e.  _V
75, 6elmap 7518 . . . . . 6  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
8 eqid 2471 . . . . . . . . . 10  |-  ( ( abs  o.  -  )  o.  f )  =  ( ( abs  o.  -  )  o.  f )
9 eqid 2471 . . . . . . . . . 10  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  =  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)
108, 9ovolsf 22503 . . . . . . . . 9  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) : NN --> ( 0 [,) +oo ) )
11 1nn 10642 . . . . . . . . 9  |-  1  e.  NN
12 ffvelrn 6035 . . . . . . . . 9  |-  ( (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) : NN --> ( 0 [,) +oo )  /\  1  e.  NN )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  e.  ( 0 [,) +oo ) )
1310, 11, 12sylancl 675 . . . . . . . 8  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  e.  ( 0 [,) +oo ) )
14 elrege0 11764 . . . . . . . . 9  |-  ( (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) ` 
1 )  e.  ( 0 [,) +oo )  <->  ( (  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) ` 
1 )  e.  RR  /\  0  <_  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
) ) )
1514simprbi 471 . . . . . . . 8  |-  ( (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) ` 
1 )  e.  ( 0 [,) +oo )  ->  0  <_  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
) )
1613, 15syl 17 . . . . . . 7  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  0  <_  (  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) ` 
1 ) )
17 frn 5747 . . . . . . . . . 10  |-  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) : NN --> ( 0 [,) +oo )  ->  ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  C_  ( 0 [,) +oo ) )
1810, 17syl 17 . . . . . . . . 9  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) )  C_  (
0 [,) +oo )
)
19 icossxr 11744 . . . . . . . . 9  |-  ( 0 [,) +oo )  C_  RR*
2018, 19syl6ss 3430 . . . . . . . 8  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) )  C_  RR* )
21 ffn 5739 . . . . . . . . . 10  |-  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) : NN --> ( 0 [,) +oo )  ->  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) )  Fn  NN )
2210, 21syl 17 . . . . . . . . 9  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) )  Fn  NN )
23 fnfvelrn 6034 . . . . . . . . 9  |-  ( (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) )  Fn  NN  /\  1  e.  NN )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  e.  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) )
2422, 11, 23sylancl 675 . . . . . . . 8  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  e.  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) )
25 supxrub 11635 . . . . . . . 8  |-  ( ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) )  C_  RR* 
/\  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) `  1 )  e.  ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) )  ->  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) `  1 )  <_  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )
2620, 24, 25syl2anc 673 . . . . . . 7  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  <_  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) )
2719, 13sseldi 3416 . . . . . . . 8  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  e.  RR* )
28 supxrcl 11625 . . . . . . . . 9  |-  ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) )  C_  RR* 
->  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  )  e.  RR* )
2920, 28syl 17 . . . . . . . 8  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  e. 
RR* )
30 0xr 9705 . . . . . . . . 9  |-  0  e.  RR*
31 xrletr 11478 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  e.  RR*  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  e. 
RR* )  ->  (
( 0  <_  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  /\  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  <_  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  ->  0  <_  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) )
3230, 31mp3an1 1377 . . . . . . . 8  |-  ( ( (  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) ` 
1 )  e.  RR*  /\ 
sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  )  e.  RR* )  ->  ( ( 0  <_  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) `  1 )  /\  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) `  1 )  <_  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )  -> 
0  <_  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) )
3327, 29, 32syl2anc 673 . . . . . . 7  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( 0  <_  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  /\  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) `  1
)  <_  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  ->  0  <_  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) )
3416, 26, 33mp2and 693 . . . . . 6  |-  ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  0  <_  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )
357, 34sylbi 200 . . . . 5  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  0  <_  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) )
36 breq2 4399 . . . . 5  |-  ( B  =  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  )  -> 
( 0  <_  B  <->  0  <_  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) )
3735, 36syl5ibrcom 230 . . . 4  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( B  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  )  ->  0  <_  B ) )
3837adantld 474 . . 3  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( ( A 
C_  U. ran  ( (,) 
o.  f )  /\  B  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  ->  0  <_  B
) )
3938rexlimiv 2867 . 2  |-  ( E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  B  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )  -> 
0  <_  B )
402, 39sylbi 200 1  |-  ( B  e.  M  ->  0  <_  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904   E.wrex 2757   {crab 2760    i^i cin 3389    C_ wss 3390   U.cuni 4190   class class class wbr 4395    X. cxp 4837   ran crn 4840    o. ccom 4843    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308    ^m cmap 7490   supcsup 7972   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560   +oocpnf 9690   RR*cxr 9692    < clt 9693    <_ cle 9694    - cmin 9880   NNcn 10631   (,)cioo 11660   [,)cico 11662    seqcseq 12251   abscabs 13374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-sup 7974  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-ico 11666  df-fz 11811  df-seq 12252  df-exp 12311  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376
This theorem is referenced by:  ovolge0  22512
  Copyright terms: Public domain W3C validator