Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovoliunnfl Structured version   Unicode version

Theorem ovoliunnfl 29661
Description: ovoliun 21679 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 21-Nov-2017.)
Hypothesis
Ref Expression
ovoliunnfl.0  |-  ( ( f  Fn  NN  /\  A. n  e.  NN  (
( f `  n
)  C_  RR  /\  ( vol* `  ( f `
 n ) )  e.  RR ) )  ->  ( vol* `  U_ m  e.  NN  ( f `  m
) )  <_  sup ( ran  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol* `  ( f `  m ) ) ) ) ,  RR* ,  <  ) )
Assertion
Ref Expression
ovoliunnfl  |-  ( ( A  ~<_  NN  /\  A. x  e.  A  x  ~<_  NN )  ->  U. A  =/=  RR )
Distinct variable group:    f, n, m, x, A

Proof of Theorem ovoliunnfl
Dummy variable  l is distinct from all other variables.
StepHypRef Expression
1 unieq 4253 . . . . . . . . 9  |-  ( A  =  (/)  ->  U. A  =  U. (/) )
2 uni0 4272 . . . . . . . . 9  |-  U. (/)  =  (/)
31, 2syl6eq 2524 . . . . . . . 8  |-  ( A  =  (/)  ->  U. A  =  (/) )
43fveq2d 5870 . . . . . . 7  |-  ( A  =  (/)  ->  ( vol* `  U. A )  =  ( vol* `  (/) ) )
5 ovol0 21667 . . . . . . 7  |-  ( vol* `  (/) )  =  0
64, 5syl6req 2525 . . . . . 6  |-  ( A  =  (/)  ->  0  =  ( vol* `  U. A ) )
76a1d 25 . . . . 5  |-  ( A  =  (/)  ->  ( ( A  ~<_  NN  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
0  =  ( vol* `  U. A ) ) )
8 ovolge0 21655 . . . . . . . 8  |-  ( U. A  C_  RR  ->  0  <_  ( vol* `  U. A ) )
98ad2antll 728 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  A  ~<_  NN )  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
0  <_  ( vol* `  U. A ) )
10 reldom 7522 . . . . . . . . . . . 12  |-  Rel  ~<_
1110brrelexi 5040 . . . . . . . . . . 11  |-  ( A  ~<_  NN  ->  A  e.  _V )
12 0sdomg 7646 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
1311, 12syl 16 . . . . . . . . . 10  |-  ( A  ~<_  NN  ->  ( (/)  ~<  A  <->  A  =/=  (/) ) )
1413biimparc 487 . . . . . . . . 9  |-  ( ( A  =/=  (/)  /\  A  ~<_  NN )  ->  (/)  ~<  A )
15 fodomr 7668 . . . . . . . . 9  |-  ( (
(/)  ~<  A  /\  A  ~<_  NN )  ->  E. f 
f : NN -onto-> A
)
1614, 15sylancom 667 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  A  ~<_  NN )  ->  E. f 
f : NN -onto-> A
)
17 unissb 4277 . . . . . . . . . . . 12  |-  ( U. A  C_  RR  <->  A. x  e.  A  x  C_  RR )
1817anbi1i 695 . . . . . . . . . . 11  |-  ( ( U. A  C_  RR  /\ 
A. x  e.  A  x  ~<_  NN )  <->  ( A. x  e.  A  x  C_  RR  /\  A. x  e.  A  x  ~<_  NN ) )
19 r19.26 2989 . . . . . . . . . . 11  |-  ( A. x  e.  A  (
x  C_  RR  /\  x  ~<_  NN )  <->  ( A. x  e.  A  x  C_  RR  /\ 
A. x  e.  A  x  ~<_  NN ) )
2018, 19bitr4i 252 . . . . . . . . . 10  |-  ( ( U. A  C_  RR  /\ 
A. x  e.  A  x  ~<_  NN )  <->  A. x  e.  A  ( x  C_  RR  /\  x  ~<_  NN ) )
21 brdom2 7545 . . . . . . . . . . . . . 14  |-  ( x  ~<_  NN  <->  ( x  ~<  NN  \/  x  ~~  NN ) )
22 nnenom 12058 . . . . . . . . . . . . . . . . 17  |-  NN  ~~  om
23 sdomen2 7662 . . . . . . . . . . . . . . . . 17  |-  ( NN 
~~  om  ->  ( x 
~<  NN  <->  x  ~<  om )
)
2422, 23ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( x 
~<  NN  <->  x  ~<  om )
25 isfinite 8069 . . . . . . . . . . . . . . . 16  |-  ( x  e.  Fin  <->  x  ~<  om )
2624, 25bitr4i 252 . . . . . . . . . . . . . . 15  |-  ( x 
~<  NN  <->  x  e.  Fin )
2726orbi1i 520 . . . . . . . . . . . . . 14  |-  ( ( x  ~<  NN  \/  x  ~~  NN )  <->  ( x  e.  Fin  \/  x  ~~  NN ) )
2821, 27bitri 249 . . . . . . . . . . . . 13  |-  ( x  ~<_  NN  <->  ( x  e. 
Fin  \/  x  ~~  NN ) )
29 ovolfi 21668 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Fin  /\  x  C_  RR )  -> 
( vol* `  x )  =  0 )
3029expcom 435 . . . . . . . . . . . . . 14  |-  ( x 
C_  RR  ->  ( x  e.  Fin  ->  ( vol* `  x )  =  0 ) )
31 ovolctb 21664 . . . . . . . . . . . . . . 15  |-  ( ( x  C_  RR  /\  x  ~~  NN )  ->  ( vol* `  x )  =  0 )
3231ex 434 . . . . . . . . . . . . . 14  |-  ( x 
C_  RR  ->  ( x 
~~  NN  ->  ( vol* `  x )  =  0 ) )
3330, 32jaod 380 . . . . . . . . . . . . 13  |-  ( x 
C_  RR  ->  ( ( x  e.  Fin  \/  x  ~~  NN )  -> 
( vol* `  x )  =  0 ) )
3428, 33syl5bi 217 . . . . . . . . . . . 12  |-  ( x 
C_  RR  ->  ( x  ~<_  NN  ->  ( vol* `  x )  =  0 ) )
3534imdistani 690 . . . . . . . . . . 11  |-  ( ( x  C_  RR  /\  x  ~<_  NN )  ->  ( x 
C_  RR  /\  ( vol* `  x )  =  0 ) )
3635ralimi 2857 . . . . . . . . . 10  |-  ( A. x  e.  A  (
x  C_  RR  /\  x  ~<_  NN )  ->  A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 ) )
3720, 36sylbi 195 . . . . . . . . 9  |-  ( ( U. A  C_  RR  /\ 
A. x  e.  A  x  ~<_  NN )  ->  A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x
)  =  0 ) )
3837ancoms 453 . . . . . . . 8  |-  ( ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR )  ->  A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 ) )
39 foima 5800 . . . . . . . . . . . . 13  |-  ( f : NN -onto-> A  -> 
( f " NN )  =  A )
4039raleqdv 3064 . . . . . . . . . . . 12  |-  ( f : NN -onto-> A  -> 
( A. x  e.  ( f " NN ) ( x  C_  RR  /\  ( vol* `  x )  =  0 )  <->  A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x
)  =  0 ) ) )
41 fofn 5797 . . . . . . . . . . . . 13  |-  ( f : NN -onto-> A  -> 
f  Fn  NN )
42 ssid 3523 . . . . . . . . . . . . 13  |-  NN  C_  NN
43 sseq1 3525 . . . . . . . . . . . . . . 15  |-  ( x  =  ( f `  l )  ->  (
x  C_  RR  <->  ( f `  l )  C_  RR ) )
44 fveq2 5866 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( f `  l )  ->  ( vol* `  x )  =  ( vol* `  ( f `  l
) ) )
4544eqeq1d 2469 . . . . . . . . . . . . . . 15  |-  ( x  =  ( f `  l )  ->  (
( vol* `  x )  =  0  <-> 
( vol* `  ( f `  l
) )  =  0 ) )
4643, 45anbi12d 710 . . . . . . . . . . . . . 14  |-  ( x  =  ( f `  l )  ->  (
( x  C_  RR  /\  ( vol* `  x )  =  0 )  <->  ( ( f `
 l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) ) )
4746ralima 6140 . . . . . . . . . . . . 13  |-  ( ( f  Fn  NN  /\  NN  C_  NN )  -> 
( A. x  e.  ( f " NN ) ( x  C_  RR  /\  ( vol* `  x )  =  0 )  <->  A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) ) )
4841, 42, 47sylancl 662 . . . . . . . . . . . 12  |-  ( f : NN -onto-> A  -> 
( A. x  e.  ( f " NN ) ( x  C_  RR  /\  ( vol* `  x )  =  0 )  <->  A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) ) )
4940, 48bitr3d 255 . . . . . . . . . . 11  |-  ( f : NN -onto-> A  -> 
( A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 )  <->  A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) ) )
50 fveq2 5866 . . . . . . . . . . . . . . . . . 18  |-  ( l  =  n  ->  (
f `  l )  =  ( f `  n ) )
5150sseq1d 3531 . . . . . . . . . . . . . . . . 17  |-  ( l  =  n  ->  (
( f `  l
)  C_  RR  <->  ( f `  n )  C_  RR ) )
5250fveq2d 5870 . . . . . . . . . . . . . . . . . 18  |-  ( l  =  n  ->  ( vol* `  ( f `
 l ) )  =  ( vol* `  ( f `  n
) ) )
5352eqeq1d 2469 . . . . . . . . . . . . . . . . 17  |-  ( l  =  n  ->  (
( vol* `  ( f `  l
) )  =  0  <-> 
( vol* `  ( f `  n
) )  =  0 ) )
5451, 53anbi12d 710 . . . . . . . . . . . . . . . 16  |-  ( l  =  n  ->  (
( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 )  <->  ( ( f `
 n )  C_  RR  /\  ( vol* `  ( f `  n
) )  =  0 ) ) )
5554cbvralv 3088 . . . . . . . . . . . . . . 15  |-  ( A. l  e.  NN  (
( f `  l
)  C_  RR  /\  ( vol* `  ( f `
 l ) )  =  0 )  <->  A. n  e.  NN  ( ( f `
 n )  C_  RR  /\  ( vol* `  ( f `  n
) )  =  0 ) )
56 0re 9596 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
57 eleq1a 2550 . . . . . . . . . . . . . . . . . 18  |-  ( 0  e.  RR  ->  (
( vol* `  ( f `  n
) )  =  0  ->  ( vol* `  ( f `  n
) )  e.  RR ) )
5856, 57ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( vol* `  (
f `  n )
)  =  0  -> 
( vol* `  ( f `  n
) )  e.  RR )
5958anim2i 569 . . . . . . . . . . . . . . . 16  |-  ( ( ( f `  n
)  C_  RR  /\  ( vol* `  ( f `
 n ) )  =  0 )  -> 
( ( f `  n )  C_  RR  /\  ( vol* `  ( f `  n
) )  e.  RR ) )
6059ralimi 2857 . . . . . . . . . . . . . . 15  |-  ( A. n  e.  NN  (
( f `  n
)  C_  RR  /\  ( vol* `  ( f `
 n ) )  =  0 )  ->  A. n  e.  NN  ( ( f `  n )  C_  RR  /\  ( vol* `  ( f `  n
) )  e.  RR ) )
6155, 60sylbi 195 . . . . . . . . . . . . . 14  |-  ( A. l  e.  NN  (
( f `  l
)  C_  RR  /\  ( vol* `  ( f `
 l ) )  =  0 )  ->  A. n  e.  NN  ( ( f `  n )  C_  RR  /\  ( vol* `  ( f `  n
) )  e.  RR ) )
62 ovoliunnfl.0 . . . . . . . . . . . . . 14  |-  ( ( f  Fn  NN  /\  A. n  e.  NN  (
( f `  n
)  C_  RR  /\  ( vol* `  ( f `
 n ) )  e.  RR ) )  ->  ( vol* `  U_ m  e.  NN  ( f `  m
) )  <_  sup ( ran  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol* `  ( f `  m ) ) ) ) ,  RR* ,  <  ) )
6341, 61, 62syl2an 477 . . . . . . . . . . . . 13  |-  ( ( f : NN -onto-> A  /\  A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) )  ->  ( vol* `  U_ m  e.  NN  ( f `  m ) )  <_  sup ( ran  seq 1
(  +  ,  ( m  e.  NN  |->  ( vol* `  (
f `  m )
) ) ) , 
RR* ,  <  ) )
64 fofun 5796 . . . . . . . . . . . . . . . . 17  |-  ( f : NN -onto-> A  ->  Fun  f )
65 funiunfv 6148 . . . . . . . . . . . . . . . . 17  |-  ( Fun  f  ->  U_ m  e.  NN  ( f `  m )  =  U. ( f " NN ) )
6664, 65syl 16 . . . . . . . . . . . . . . . 16  |-  ( f : NN -onto-> A  ->  U_ m  e.  NN  ( f `  m
)  =  U. (
f " NN ) )
6739unieqd 4255 . . . . . . . . . . . . . . . 16  |-  ( f : NN -onto-> A  ->  U. ( f " NN )  =  U. A )
6866, 67eqtrd 2508 . . . . . . . . . . . . . . 15  |-  ( f : NN -onto-> A  ->  U_ m  e.  NN  ( f `  m
)  =  U. A
)
6968fveq2d 5870 . . . . . . . . . . . . . 14  |-  ( f : NN -onto-> A  -> 
( vol* `  U_ m  e.  NN  (
f `  m )
)  =  ( vol* `  U. A ) )
7069adantr 465 . . . . . . . . . . . . 13  |-  ( ( f : NN -onto-> A  /\  A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) )  ->  ( vol* `  U_ m  e.  NN  ( f `  m ) )  =  ( vol* `  U. A ) )
71 fveq2 5866 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( l  =  m  ->  (
f `  l )  =  ( f `  m ) )
7271sseq1d 3531 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( l  =  m  ->  (
( f `  l
)  C_  RR  <->  ( f `  m )  C_  RR ) )
7371fveq2d 5870 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( l  =  m  ->  ( vol* `  ( f `
 l ) )  =  ( vol* `  ( f `  m
) ) )
7473eqeq1d 2469 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( l  =  m  ->  (
( vol* `  ( f `  l
) )  =  0  <-> 
( vol* `  ( f `  m
) )  =  0 ) )
7572, 74anbi12d 710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( l  =  m  ->  (
( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 )  <->  ( ( f `
 m )  C_  RR  /\  ( vol* `  ( f `  m
) )  =  0 ) ) )
7675rspccva 3213 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 )  /\  m  e.  NN )  ->  (
( f `  m
)  C_  RR  /\  ( vol* `  ( f `
 m ) )  =  0 ) )
7776simprd 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 )  /\  m  e.  NN )  ->  ( vol* `  ( f `
 m ) )  =  0 )
7877mpteq2dva 4533 . . . . . . . . . . . . . . . . . 18  |-  ( A. l  e.  NN  (
( f `  l
)  C_  RR  /\  ( vol* `  ( f `
 l ) )  =  0 )  -> 
( m  e.  NN  |->  ( vol* `  (
f `  m )
) )  =  ( m  e.  NN  |->  0 ) )
7978seqeq3d 12083 . . . . . . . . . . . . . . . . 17  |-  ( A. l  e.  NN  (
( f `  l
)  C_  RR  /\  ( vol* `  ( f `
 l ) )  =  0 )  ->  seq 1 (  +  , 
( m  e.  NN  |->  ( vol* `  (
f `  m )
) ) )  =  seq 1 (  +  ,  ( m  e.  NN  |->  0 ) ) )
8079rneqd 5230 . . . . . . . . . . . . . . . 16  |-  ( A. l  e.  NN  (
( f `  l
)  C_  RR  /\  ( vol* `  ( f `
 l ) )  =  0 )  ->  ran  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol* `  ( f `  m
) ) ) )  =  ran  seq 1
(  +  ,  ( m  e.  NN  |->  0 ) ) )
8180supeq1d 7906 . . . . . . . . . . . . . . 15  |-  ( A. l  e.  NN  (
( f `  l
)  C_  RR  /\  ( vol* `  ( f `
 l ) )  =  0 )  ->  sup ( ran  seq 1
(  +  ,  ( m  e.  NN  |->  ( vol* `  (
f `  m )
) ) ) , 
RR* ,  <  )  =  sup ( ran  seq 1 (  +  , 
( m  e.  NN  |->  0 ) ) , 
RR* ,  <  ) )
82 0cn 9588 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  e.  CC
83 ser1const 12131 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 0  e.  CC  /\  l  e.  NN )  ->  (  seq 1 (  +  ,  ( NN 
X.  { 0 } ) ) `  l
)  =  ( l  x.  0 ) )
8482, 83mpan 670 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( l  e.  NN  ->  (  seq 1 (  +  , 
( NN  X.  {
0 } ) ) `
 l )  =  ( l  x.  0 ) )
85 nncn 10544 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( l  e.  NN  ->  l  e.  CC )
8685mul01d 9778 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( l  e.  NN  ->  (
l  x.  0 )  =  0 )
8784, 86eqtrd 2508 . . . . . . . . . . . . . . . . . . . . 21  |-  ( l  e.  NN  ->  (  seq 1 (  +  , 
( NN  X.  {
0 } ) ) `
 l )  =  0 )
8887mpteq2ia 4529 . . . . . . . . . . . . . . . . . . . 20  |-  ( l  e.  NN  |->  (  seq 1 (  +  , 
( NN  X.  {
0 } ) ) `
 l ) )  =  ( l  e.  NN  |->  0 )
89 fconstmpt 5043 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( NN 
X.  { 0 } )  =  ( m  e.  NN  |->  0 )
90 seqeq3 12080 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( NN  X.  { 0 } )  =  ( m  e.  NN  |->  0 )  ->  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  =  seq 1 (  +  ,  ( m  e.  NN  |->  0 ) ) )
9189, 90ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  =  seq 1 (  +  ,  ( m  e.  NN  |->  0 ) )
92 1z 10894 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  e.  ZZ
93 seqfn 12087 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  e.  ZZ  ->  seq 1 (  +  , 
( NN  X.  {
0 } ) )  Fn  ( ZZ>= `  1
) )
9492, 93ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  Fn  ( ZZ>= `  1 )
95 nnuz 11117 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  NN  =  ( ZZ>= `  1 )
9695fneq2i 5676 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (  seq 1 (  +  , 
( NN  X.  {
0 } ) )  Fn  NN  <->  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  Fn  ( ZZ>= `  1 )
)
97 dffn5 5913 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (  seq 1 (  +  , 
( NN  X.  {
0 } ) )  Fn  NN  <->  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  =  ( l  e.  NN  |->  (  seq 1 (  +  ,  ( NN  X.  { 0 } ) ) `  l ) ) )
9896, 97bitr3i 251 . . . . . . . . . . . . . . . . . . . . . 22  |-  (  seq 1 (  +  , 
( NN  X.  {
0 } ) )  Fn  ( ZZ>= `  1
)  <->  seq 1 (  +  ,  ( NN  X.  { 0 } ) )  =  ( l  e.  NN  |->  (  seq 1 (  +  , 
( NN  X.  {
0 } ) ) `
 l ) ) )
9994, 98mpbi 208 . . . . . . . . . . . . . . . . . . . . 21  |-  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  =  ( l  e.  NN  |->  (  seq 1 (  +  ,  ( NN  X.  { 0 } ) ) `  l ) )
10091, 99eqtr3i 2498 . . . . . . . . . . . . . . . . . . . 20  |-  seq 1
(  +  ,  ( m  e.  NN  |->  0 ) )  =  ( l  e.  NN  |->  (  seq 1 (  +  ,  ( NN  X.  { 0 } ) ) `  l ) )
101 fconstmpt 5043 . . . . . . . . . . . . . . . . . . . 20  |-  ( NN 
X.  { 0 } )  =  ( l  e.  NN  |->  0 )
10288, 100, 1013eqtr4i 2506 . . . . . . . . . . . . . . . . . . 19  |-  seq 1
(  +  ,  ( m  e.  NN  |->  0 ) )  =  ( NN  X.  { 0 } )
103102rneqi 5229 . . . . . . . . . . . . . . . . . 18  |-  ran  seq 1 (  +  , 
( m  e.  NN  |->  0 ) )  =  ran  ( NN  X.  { 0 } )
104 1nn 10547 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  NN
105 ne0i 3791 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  e.  NN  ->  NN  =/=  (/) )
106 rnxp 5437 . . . . . . . . . . . . . . . . . . 19  |-  ( NN  =/=  (/)  ->  ran  ( NN 
X.  { 0 } )  =  { 0 } )
107104, 105, 106mp2b 10 . . . . . . . . . . . . . . . . . 18  |-  ran  ( NN  X.  { 0 } )  =  { 0 }
108103, 107eqtri 2496 . . . . . . . . . . . . . . . . 17  |-  ran  seq 1 (  +  , 
( m  e.  NN  |->  0 ) )  =  { 0 }
109108supeq1i 7907 . . . . . . . . . . . . . . . 16  |-  sup ( ran  seq 1 (  +  ,  ( m  e.  NN  |->  0 ) ) ,  RR* ,  <  )  =  sup ( { 0 } ,  RR* ,  <  )
110 xrltso 11347 . . . . . . . . . . . . . . . . 17  |-  <  Or  RR*
111 0xr 9640 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR*
112 supsn 7930 . . . . . . . . . . . . . . . . 17  |-  ( (  <  Or  RR*  /\  0  e.  RR* )  ->  sup ( { 0 } ,  RR* ,  <  )  =  0 )
113110, 111, 112mp2an 672 . . . . . . . . . . . . . . . 16  |-  sup ( { 0 } ,  RR* ,  <  )  =  0
114109, 113eqtri 2496 . . . . . . . . . . . . . . 15  |-  sup ( ran  seq 1 (  +  ,  ( m  e.  NN  |->  0 ) ) ,  RR* ,  <  )  =  0
11581, 114syl6eq 2524 . . . . . . . . . . . . . 14  |-  ( A. l  e.  NN  (
( f `  l
)  C_  RR  /\  ( vol* `  ( f `
 l ) )  =  0 )  ->  sup ( ran  seq 1
(  +  ,  ( m  e.  NN  |->  ( vol* `  (
f `  m )
) ) ) , 
RR* ,  <  )  =  0 )
116115adantl 466 . . . . . . . . . . . . 13  |-  ( ( f : NN -onto-> A  /\  A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) )  ->  sup ( ran  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol* `  ( f `  m ) ) ) ) ,  RR* ,  <  )  =  0 )
11763, 70, 1163brtr3d 4476 . . . . . . . . . . . 12  |-  ( ( f : NN -onto-> A  /\  A. l  e.  NN  ( ( f `  l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 ) )  ->  ( vol* `  U. A
)  <_  0 )
118117ex 434 . . . . . . . . . . 11  |-  ( f : NN -onto-> A  -> 
( A. l  e.  NN  ( ( f `
 l )  C_  RR  /\  ( vol* `  ( f `  l
) )  =  0 )  ->  ( vol* `  U. A )  <_  0 ) )
11949, 118sylbid 215 . . . . . . . . . 10  |-  ( f : NN -onto-> A  -> 
( A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 )  ->  ( vol* `  U. A )  <_  0 ) )
120119exlimiv 1698 . . . . . . . . 9  |-  ( E. f  f : NN -onto-> A  ->  ( A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 )  -> 
( vol* `  U. A )  <_  0
) )
121120imp 429 . . . . . . . 8  |-  ( ( E. f  f : NN -onto-> A  /\  A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 ) )  ->  ( vol* `  U. A )  <_ 
0 )
12216, 38, 121syl2an 477 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  A  ~<_  NN )  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
( vol* `  U. A )  <_  0
)
123 ovolcl 21652 . . . . . . . . 9  |-  ( U. A  C_  RR  ->  ( vol* `  U. A
)  e.  RR* )
124 xrletri3 11358 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  ( vol* `  U. A
)  e.  RR* )  ->  ( 0  =  ( vol* `  U. A )  <->  ( 0  <_  ( vol* `  U. A )  /\  ( vol* `  U. A )  <_  0
) ) )
125111, 123, 124sylancr 663 . . . . . . . 8  |-  ( U. A  C_  RR  ->  (
0  =  ( vol* `  U. A )  <-> 
( 0  <_  ( vol* `  U. A
)  /\  ( vol* `  U. A )  <_  0 ) ) )
126125ad2antll 728 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  A  ~<_  NN )  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
( 0  =  ( vol* `  U. A )  <->  ( 0  <_  ( vol* `  U. A )  /\  ( vol* `  U. A )  <_  0
) ) )
1279, 122, 126mpbir2and 920 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  A  ~<_  NN )  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
0  =  ( vol* `  U. A ) )
128127expl 618 . . . . 5  |-  ( A  =/=  (/)  ->  ( ( A  ~<_  NN  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
0  =  ( vol* `  U. A ) ) )
1297, 128pm2.61ine 2780 . . . 4  |-  ( ( A  ~<_  NN  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
0  =  ( vol* `  U. A ) )
130 renepnf 9641 . . . . . . 7  |-  ( 0  e.  RR  ->  0  =/= +oo )
13156, 130mp1i 12 . . . . . 6  |-  ( U. A  =  RR  ->  0  =/= +oo )
132 fveq2 5866 . . . . . . 7  |-  ( U. A  =  RR  ->  ( vol* `  U. A )  =  ( vol* `  RR ) )
133 ovolre 21699 . . . . . . 7  |-  ( vol* `  RR )  = +oo
134132, 133syl6eq 2524 . . . . . 6  |-  ( U. A  =  RR  ->  ( vol* `  U. A )  = +oo )
135131, 134neeqtrrd 2767 . . . . 5  |-  ( U. A  =  RR  ->  0  =/=  ( vol* `  U. A ) )
136135necon2i 2710 . . . 4  |-  ( 0  =  ( vol* `  U. A )  ->  U. A  =/=  RR )
137129, 136syl 16 . . 3  |-  ( ( A  ~<_  NN  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  ->  U. A  =/=  RR )
138137expr 615 . 2  |-  ( ( A  ~<_  NN  /\  A. x  e.  A  x  ~<_  NN )  ->  ( U. A  C_  RR  ->  U. A  =/= 
RR ) )
139 eqimss 3556 . . 3  |-  ( U. A  =  RR  ->  U. A  C_  RR )
140139necon3bi 2696 . 2  |-  ( -. 
U. A  C_  RR  ->  U. A  =/=  RR )
141138, 140pm2.61d1 159 1  |-  ( ( A  ~<_  NN  /\  A. x  e.  A  x  ~<_  NN )  ->  U. A  =/=  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814   _Vcvv 3113    C_ wss 3476   (/)c0 3785   {csn 4027   U.cuni 4245   U_ciun 4325   class class class wbr 4447    |-> cmpt 4505    Or wor 4799    X. cxp 4997   ran crn 5000   "cima 5002   Fun wfun 5582    Fn wfn 5583   -onto->wfo 5586   ` cfv 5588  (class class class)co 6284   omcom 6684    ~~ cen 7513    ~<_ cdom 7514    ~< csdm 7515   Fincfn 7516   supcsup 7900   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497   +oocpnf 9625   RR*cxr 9627    < clt 9628    <_ cle 9629   NNcn 10536   ZZcz 10864   ZZ>=cuz 11082    seqcseq 12075   vol*covol 21637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-sum 13472  df-rest 14678  df-topgen 14699  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-top 19194  df-bases 19196  df-topon 19197  df-cmp 19681  df-ovol 21639
This theorem is referenced by:  ex-ovoliunnfl  29662
  Copyright terms: Public domain W3C validator