MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolgelb Structured version   Unicode version

Theorem ovolgelb 22340
Description: The outer volume is the greatest lower bound on the sum of all interval coverings of  A. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
ovolgelb.1  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  g ) )
Assertion
Ref Expression
ovolgelb  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  sup ( ran  S ,  RR* ,  <  )  <_  (
( vol* `  A )  +  B
) ) )
Distinct variable groups:    A, g    B, g
Allowed substitution hint:    S( g)

Proof of Theorem ovolgelb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1006 . . . . . 6  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  ( vol* `  A )  e.  RR )
2 simp3 1007 . . . . . 6  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  B  e.  RR+ )
31, 2ltaddrpd 11360 . . . . 5  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  ( vol* `  A )  <  ( ( vol* `  A )  +  B ) )
42rpred 11330 . . . . . . 7  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  B  e.  RR )
51, 4readdcld 9659 . . . . . 6  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  (
( vol* `  A )  +  B
)  e.  RR )
61, 5ltnled 9771 . . . . 5  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  (
( vol* `  A )  <  (
( vol* `  A )  +  B
)  <->  -.  ( ( vol* `  A )  +  B )  <_ 
( vol* `  A ) ) )
73, 6mpbid 213 . . . 4  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  -.  ( ( vol* `  A )  +  B
)  <_  ( vol* `  A ) )
8 eqid 2420 . . . . . . . 8  |-  { y  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) }  =  { y  e. 
RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) }
98ovolval 22333 . . . . . . 7  |-  ( A 
C_  RR  ->  ( vol* `  A )  = inf ( { y  e. 
RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) } ,  RR* ,  <  )
)
1093ad2ant1 1026 . . . . . 6  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  ( vol* `  A )  = inf ( { y  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) } ,  RR* ,  <  )
)
1110breq2d 4429 . . . . 5  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  (
( ( vol* `  A )  +  B
)  <_  ( vol* `  A )  <->  ( ( vol* `  A )  +  B )  <_ inf ( { y  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  g ) ) , 
RR* ,  <  ) ) } ,  RR* ,  <  ) ) )
12 ssrab2 3543 . . . . . . 7  |-  { y  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) } 
C_  RR*
135rexrd 9679 . . . . . . 7  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  (
( vol* `  A )  +  B
)  e.  RR* )
14 infxrgelb 11610 . . . . . . 7  |-  ( ( { y  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  g ) ) , 
RR* ,  <  ) ) }  C_  RR*  /\  (
( vol* `  A )  +  B
)  e.  RR* )  ->  ( ( ( vol* `  A )  +  B )  <_ inf ( { y  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) } ,  RR* ,  <  )  <->  A. x  e.  { y  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) }  ( ( vol* `  A )  +  B
)  <_  x )
)
1512, 13, 14sylancr 667 . . . . . 6  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  (
( ( vol* `  A )  +  B
)  <_ inf ( {
y  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) } ,  RR* ,  <  )  <->  A. x  e.  { y  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) }  ( ( vol* `  A )  +  B
)  <_  x )
)
16 eqeq1 2424 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  g ) ) , 
RR* ,  <  )  <->  x  =  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  g )
) ,  RR* ,  <  ) ) )
17 ovolgelb.1 . . . . . . . . . . . . . 14  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  g ) )
1817rneqi 5072 . . . . . . . . . . . . 13  |-  ran  S  =  ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  g ) )
1918supeq1i 7958 . . . . . . . . . . . 12  |-  sup ( ran  S ,  RR* ,  <  )  =  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  g ) ) , 
RR* ,  <  )
2019eqeq2i 2438 . . . . . . . . . . 11  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  <-> 
x  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  g ) ) , 
RR* ,  <  ) )
2116, 20syl6bbr 266 . . . . . . . . . 10  |-  ( y  =  x  ->  (
y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  g ) ) , 
RR* ,  <  )  <->  x  =  sup ( ran  S ,  RR* ,  <  ) ) )
2221anbi2d 708 . . . . . . . . 9  |-  ( y  =  x  ->  (
( A  C_  U. ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  g ) ) , 
RR* ,  <  ) )  <-> 
( A  C_  U. ran  ( (,)  o.  g )  /\  x  =  sup ( ran  S ,  RR* ,  <  ) ) ) )
2322rexbidv 2937 . . . . . . . 8  |-  ( y  =  x  ->  ( E. g  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  g ) ) , 
RR* ,  <  ) )  <->  E. g  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  g )  /\  x  =  sup ( ran  S ,  RR* ,  <  ) ) ) )
2423ralrab 3230 . . . . . . 7  |-  ( A. x  e.  { y  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) }  ( ( vol* `  A )  +  B
)  <_  x  <->  A. x  e.  RR*  ( E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  x  =  sup ( ran  S ,  RR* ,  <  )
)  ->  ( ( vol* `  A )  +  B )  <_  x ) )
25 ralcom 2987 . . . . . . . 8  |-  ( A. x  e.  RR*  A. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( ( A 
C_  U. ran  ( (,) 
o.  g )  /\  x  =  sup ( ran  S ,  RR* ,  <  ) )  ->  ( ( vol* `  A )  +  B )  <_  x )  <->  A. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) A. x  e.  RR*  ( ( A  C_  U.
ran  ( (,)  o.  g )  /\  x  =  sup ( ran  S ,  RR* ,  <  )
)  ->  ( ( vol* `  A )  +  B )  <_  x ) )
26 r19.23v 2903 . . . . . . . . 9  |-  ( A. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( ( A 
C_  U. ran  ( (,) 
o.  g )  /\  x  =  sup ( ran  S ,  RR* ,  <  ) )  ->  ( ( vol* `  A )  +  B )  <_  x )  <->  ( E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  x  =  sup ( ran  S ,  RR* ,  <  )
)  ->  ( ( vol* `  A )  +  B )  <_  x ) )
2726ralbii 2854 . . . . . . . 8  |-  ( A. x  e.  RR*  A. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( ( A 
C_  U. ran  ( (,) 
o.  g )  /\  x  =  sup ( ran  S ,  RR* ,  <  ) )  ->  ( ( vol* `  A )  +  B )  <_  x )  <->  A. x  e.  RR*  ( E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  x  =  sup ( ran  S ,  RR* ,  <  )
)  ->  ( ( vol* `  A )  +  B )  <_  x ) )
28 ancomst 453 . . . . . . . . . . . 12  |-  ( ( ( A  C_  U. ran  ( (,)  o.  g )  /\  x  =  sup ( ran  S ,  RR* ,  <  ) )  -> 
( ( vol* `  A )  +  B
)  <_  x )  <->  ( ( x  =  sup ( ran  S ,  RR* ,  <  )  /\  A  C_ 
U. ran  ( (,)  o.  g ) )  -> 
( ( vol* `  A )  +  B
)  <_  x )
)
29 impexp 447 . . . . . . . . . . . 12  |-  ( ( ( x  =  sup ( ran  S ,  RR* ,  <  )  /\  A  C_ 
U. ran  ( (,)  o.  g ) )  -> 
( ( vol* `  A )  +  B
)  <_  x )  <->  ( x  =  sup ( ran  S ,  RR* ,  <  )  ->  ( A  C_  U.
ran  ( (,)  o.  g )  ->  (
( vol* `  A )  +  B
)  <_  x )
) )
3028, 29bitri 252 . . . . . . . . . . 11  |-  ( ( ( A  C_  U. ran  ( (,)  o.  g )  /\  x  =  sup ( ran  S ,  RR* ,  <  ) )  -> 
( ( vol* `  A )  +  B
)  <_  x )  <->  ( x  =  sup ( ran  S ,  RR* ,  <  )  ->  ( A  C_  U.
ran  ( (,)  o.  g )  ->  (
( vol* `  A )  +  B
)  <_  x )
) )
3130ralbii 2854 . . . . . . . . . 10  |-  ( A. x  e.  RR*  ( ( A  C_  U. ran  ( (,)  o.  g )  /\  x  =  sup ( ran  S ,  RR* ,  <  ) )  ->  ( ( vol* `  A )  +  B )  <_  x )  <->  A. x  e.  RR*  ( x  =  sup ( ran  S ,  RR* ,  <  )  ->  ( A  C_  U. ran  ( (,)  o.  g )  ->  ( ( vol* `  A )  +  B )  <_  x
) ) )
32 reex 9619 . . . . . . . . . . . . . . . . . 18  |-  RR  e.  _V
3332, 32xpex 6600 . . . . . . . . . . . . . . . . 17  |-  ( RR 
X.  RR )  e. 
_V
3433inex2 4558 . . . . . . . . . . . . . . . 16  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
35 nnex 10604 . . . . . . . . . . . . . . . 16  |-  NN  e.  _V
3634, 35elmap 7499 . . . . . . . . . . . . . . 15  |-  ( g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  g : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
37 eqid 2420 . . . . . . . . . . . . . . . 16  |-  ( ( abs  o.  -  )  o.  g )  =  ( ( abs  o.  -  )  o.  g )
3837, 17ovolsf 22332 . . . . . . . . . . . . . . 15  |-  ( g : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  S : NN --> ( 0 [,) +oo ) )
3936, 38sylbi 198 . . . . . . . . . . . . . 14  |-  ( g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  S : NN --> ( 0 [,) +oo ) )
40 frn 5743 . . . . . . . . . . . . . 14  |-  ( S : NN --> ( 0 [,) +oo )  ->  ran  S  C_  ( 0 [,) +oo ) )
4139, 40syl 17 . . . . . . . . . . . . 13  |-  ( g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ran  S  C_  (
0 [,) +oo )
)
42 icossxr 11708 . . . . . . . . . . . . 13  |-  ( 0 [,) +oo )  C_  RR*
4341, 42syl6ss 3473 . . . . . . . . . . . 12  |-  ( g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ran  S  C_  RR* )
44 supxrcl 11589 . . . . . . . . . . . 12  |-  ( ran 
S  C_  RR*  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR* )
4543, 44syl 17 . . . . . . . . . . 11  |-  ( g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR* )
46 breq2 4421 . . . . . . . . . . . . 13  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( ( ( vol* `  A
)  +  B )  <_  x  <->  ( ( vol* `  A )  +  B )  <_  sup ( ran  S ,  RR* ,  <  ) ) )
4746imbi2d 317 . . . . . . . . . . . 12  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( ( A 
C_  U. ran  ( (,) 
o.  g )  -> 
( ( vol* `  A )  +  B
)  <_  x )  <->  ( A  C_  U. ran  ( (,)  o.  g )  -> 
( ( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  ) ) ) )
4847ceqsralv 3107 . . . . . . . . . . 11  |-  ( sup ( ran  S ,  RR* ,  <  )  e. 
RR*  ->  ( A. x  e.  RR*  ( x  =  sup ( ran  S ,  RR* ,  <  )  ->  ( A  C_  U. ran  ( (,)  o.  g )  ->  ( ( vol* `  A )  +  B )  <_  x
) )  <->  ( A  C_ 
U. ran  ( (,)  o.  g )  ->  (
( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  ) ) ) )
4945, 48syl 17 . . . . . . . . . 10  |-  ( g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( A. x  e.  RR*  ( x  =  sup ( ran  S ,  RR* ,  <  )  ->  ( A  C_  U. ran  ( (,)  o.  g )  ->  ( ( vol* `  A )  +  B )  <_  x
) )  <->  ( A  C_ 
U. ran  ( (,)  o.  g )  ->  (
( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  ) ) ) )
5031, 49syl5bb 260 . . . . . . . . 9  |-  ( g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  ( A. x  e.  RR*  ( ( A 
C_  U. ran  ( (,) 
o.  g )  /\  x  =  sup ( ran  S ,  RR* ,  <  ) )  ->  ( ( vol* `  A )  +  B )  <_  x )  <->  ( A  C_ 
U. ran  ( (,)  o.  g )  ->  (
( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  ) ) ) )
5150ralbiia 2853 . . . . . . . 8  |-  ( A. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) A. x  e.  RR*  ( ( A  C_  U.
ran  ( (,)  o.  g )  /\  x  =  sup ( ran  S ,  RR* ,  <  )
)  ->  ( ( vol* `  A )  +  B )  <_  x )  <->  A. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  ->  (
( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  ) ) )
5225, 27, 513bitr3i 278 . . . . . . 7  |-  ( A. x  e.  RR*  ( E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  x  =  sup ( ran  S ,  RR* ,  <  )
)  ->  ( ( vol* `  A )  +  B )  <_  x )  <->  A. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  ->  (
( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  ) ) )
5324, 52bitri 252 . . . . . 6  |-  ( A. x  e.  { y  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) }  ( ( vol* `  A )  +  B
)  <_  x  <->  A. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  ->  (
( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  ) ) )
5415, 53syl6rbb 265 . . . . 5  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  ( A. g  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  g )  -> 
( ( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  ) )  <->  ( ( vol* `  A )  +  B )  <_ inf ( { y  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  y  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) } ,  RR* ,  <  )
) )
5511, 54bitr4d 259 . . . 4  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  (
( ( vol* `  A )  +  B
)  <_  ( vol* `  A )  <->  A. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  ->  (
( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  ) ) ) )
567, 55mtbid 301 . . 3  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  -.  A. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  ->  (
( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  ) ) )
57 rexanali 2876 . . 3  |-  ( E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  -.  ( ( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  ) )  <->  -.  A. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  ->  (
( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  ) ) )
5856, 57sylibr 215 . 2  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  -.  ( ( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  ) ) )
59 xrltnle 9690 . . . . . 6  |-  ( ( sup ( ran  S ,  RR* ,  <  )  e.  RR*  /\  ( ( vol* `  A
)  +  B )  e.  RR* )  ->  ( sup ( ran  S ,  RR* ,  <  )  < 
( ( vol* `  A )  +  B
)  <->  -.  ( ( vol* `  A )  +  B )  <_  sup ( ran  S ,  RR* ,  <  ) ) )
60 xrltle 11437 . . . . . 6  |-  ( ( sup ( ran  S ,  RR* ,  <  )  e.  RR*  /\  ( ( vol* `  A
)  +  B )  e.  RR* )  ->  ( sup ( ran  S ,  RR* ,  <  )  < 
( ( vol* `  A )  +  B
)  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  B ) ) )
6159, 60sylbird 238 . . . . 5  |-  ( ( sup ( ran  S ,  RR* ,  <  )  e.  RR*  /\  ( ( vol* `  A
)  +  B )  e.  RR* )  ->  ( -.  ( ( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  )  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  B
) ) )
6245, 13, 61syl2anr 480 . . . 4  |-  ( ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  /\  g  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  ( -.  (
( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  )  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  B
) ) )
6362anim2d 567 . . 3  |-  ( ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  /\  g  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  ( ( A 
C_  U. ran  ( (,) 
o.  g )  /\  -.  ( ( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  ) )  ->  ( A  C_ 
U. ran  ( (,)  o.  g )  /\  sup ( ran  S ,  RR* ,  <  )  <_  (
( vol* `  A )  +  B
) ) ) )
6463reximdva 2898 . 2  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  ( E. g  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  g )  /\  -.  ( ( vol* `  A )  +  B
)  <_  sup ( ran  S ,  RR* ,  <  ) )  ->  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  sup ( ran  S ,  RR* ,  <  )  <_  (
( vol* `  A )  +  B
) ) ) )
6558, 64mpd 15 1  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  B  e.  RR+ )  ->  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  sup ( ran  S ,  RR* ,  <  )  <_  (
( vol* `  A )  +  B
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867   A.wral 2773   E.wrex 2774   {crab 2777    i^i cin 3432    C_ wss 3433   U.cuni 4213   class class class wbr 4417    X. cxp 4843   ran crn 4846    o. ccom 4849   -->wf 5588   ` cfv 5592  (class class class)co 6296    ^m cmap 7471   supcsup 7951  infcinf 7952   RRcr 9527   0cc0 9528   1c1 9529    + caddc 9531   +oocpnf 9661   RR*cxr 9663    < clt 9664    <_ cle 9665    - cmin 9849   NNcn 10598   RR+crp 11291   (,)cioo 11624   [,)cico 11626    seqcseq 12199   abscabs 13265   vol*covol 22320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-pre-sup 9606
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-er 7362  df-map 7473  df-en 7569  df-dom 7570  df-sdom 7571  df-sup 7953  df-inf 7954  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-div 10259  df-nn 10599  df-2 10657  df-3 10658  df-n0 10859  df-z 10927  df-uz 11149  df-rp 11292  df-ico 11630  df-fz 11772  df-seq 12200  df-exp 12259  df-cj 13130  df-re 13131  df-im 13132  df-sqrt 13266  df-abs 13267  df-ovol 22323
This theorem is referenced by:  ovolunlem2  22358  ovoliunlem3  22364  ovolscalem2  22374  ioombl1  22422  uniioombl  22454  mblfinlem3  31727  mblfinlem4  31728
  Copyright terms: Public domain W3C validator