MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfiniun Structured version   Visualization version   Unicode version

Theorem ovolfiniun 22503
Description: The Lebesgue outer measure function is finitely sub-additive. Finite sum version. (Contributed by Mario Carneiro, 19-Jun-2014.)
Assertion
Ref Expression
ovolfiniun  |-  ( ( A  e.  Fin  /\  A. k  e.  A  ( B  C_  RR  /\  ( vol* `  B )  e.  RR ) )  ->  ( vol* `  U_ k  e.  A  B )  <_  sum_ k  e.  A  ( vol* `  B ) )
Distinct variable group:    A, k
Allowed substitution hint:    B( k)

Proof of Theorem ovolfiniun
Dummy variables  m  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2999 . . . 4  |-  ( x  =  (/)  ->  ( A. k  e.  x  ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  <->  A. k  e.  (/)  ( B  C_  RR  /\  ( vol* `  B )  e.  RR ) ) )
2 iuneq1 4306 . . . . . 6  |-  ( x  =  (/)  ->  U_ k  e.  x  B  =  U_ k  e.  (/)  B )
32fveq2d 5892 . . . . 5  |-  ( x  =  (/)  ->  ( vol* `  U_ k  e.  x  B )  =  ( vol* `  U_ k  e.  (/)  B ) )
4 sumeq1 13804 . . . . 5  |-  ( x  =  (/)  ->  sum_ k  e.  x  ( vol* `  B )  = 
sum_ k  e.  (/)  ( vol* `  B
) )
53, 4breq12d 4429 . . . 4  |-  ( x  =  (/)  ->  ( ( vol* `  U_ k  e.  x  B )  <_ 
sum_ k  e.  x  ( vol* `  B
)  <->  ( vol* `  U_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( vol* `  B ) ) )
61, 5imbi12d 326 . . 3  |-  ( x  =  (/)  ->  ( ( A. k  e.  x  ( B  C_  RR  /\  ( vol* `  B
)  e.  RR )  ->  ( vol* `  U_ k  e.  x  B )  <_  sum_ k  e.  x  ( vol* `  B ) )  <-> 
( A. k  e.  (/)  ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  ->  ( vol* `  U_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( vol* `  B ) ) ) )
7 raleq 2999 . . . 4  |-  ( x  =  y  ->  ( A. k  e.  x  ( B  C_  RR  /\  ( vol* `  B
)  e.  RR )  <->  A. k  e.  y 
( B  C_  RR  /\  ( vol* `  B )  e.  RR ) ) )
8 iuneq1 4306 . . . . . 6  |-  ( x  =  y  ->  U_ k  e.  x  B  =  U_ k  e.  y  B )
98fveq2d 5892 . . . . 5  |-  ( x  =  y  ->  ( vol* `  U_ k  e.  x  B )  =  ( vol* `  U_ k  e.  y  B ) )
10 sumeq1 13804 . . . . 5  |-  ( x  =  y  ->  sum_ k  e.  x  ( vol* `  B )  = 
sum_ k  e.  y  ( vol* `  B ) )
119, 10breq12d 4429 . . . 4  |-  ( x  =  y  ->  (
( vol* `  U_ k  e.  x  B )  <_  sum_ k  e.  x  ( vol* `  B )  <->  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B
) ) )
127, 11imbi12d 326 . . 3  |-  ( x  =  y  ->  (
( A. k  e.  x  ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  ->  ( vol* `  U_ k  e.  x  B )  <_  sum_ k  e.  x  ( vol* `  B ) )  <-> 
( A. k  e.  y  ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  ->  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) ) )
13 raleq 2999 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A. k  e.  x  ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  <->  A. k  e.  ( y  u.  {
z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR ) ) )
14 iuneq1 4306 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  U_ k  e.  x  B  =  U_ k  e.  ( y  u.  {
z } ) B )
1514fveq2d 5892 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( vol* `  U_ k  e.  x  B )  =  ( vol* `  U_ k  e.  ( y  u.  {
z } ) B ) )
16 sumeq1 13804 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  sum_ k  e.  x  ( vol* `  B
)  =  sum_ k  e.  ( y  u.  {
z } ) ( vol* `  B
) )
1715, 16breq12d 4429 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( vol* `  U_ k  e.  x  B )  <_  sum_ k  e.  x  ( vol* `  B
)  <->  ( vol* `  U_ k  e.  ( y  u.  { z } ) B )  <_  sum_ k  e.  ( y  u.  { z } ) ( vol* `  B )
) )
1813, 17imbi12d 326 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( A. k  e.  x  ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  -> 
( vol* `  U_ k  e.  x  B )  <_  sum_ k  e.  x  ( vol* `  B ) )  <->  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  ->  ( vol* `  U_ k  e.  ( y  u.  { z } ) B )  <_  sum_ k  e.  ( y  u.  { z } ) ( vol* `  B )
) ) )
19 raleq 2999 . . . 4  |-  ( x  =  A  ->  ( A. k  e.  x  ( B  C_  RR  /\  ( vol* `  B
)  e.  RR )  <->  A. k  e.  A  ( B  C_  RR  /\  ( vol* `  B
)  e.  RR ) ) )
20 iuneq1 4306 . . . . . 6  |-  ( x  =  A  ->  U_ k  e.  x  B  =  U_ k  e.  A  B
)
2120fveq2d 5892 . . . . 5  |-  ( x  =  A  ->  ( vol* `  U_ k  e.  x  B )  =  ( vol* `  U_ k  e.  A  B ) )
22 sumeq1 13804 . . . . 5  |-  ( x  =  A  ->  sum_ k  e.  x  ( vol* `  B )  = 
sum_ k  e.  A  ( vol* `  B
) )
2321, 22breq12d 4429 . . . 4  |-  ( x  =  A  ->  (
( vol* `  U_ k  e.  x  B )  <_  sum_ k  e.  x  ( vol* `  B )  <->  ( vol* `  U_ k  e.  A  B )  <_  sum_ k  e.  A  ( vol* `  B
) ) )
2419, 23imbi12d 326 . . 3  |-  ( x  =  A  ->  (
( A. k  e.  x  ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  ->  ( vol* `  U_ k  e.  x  B )  <_  sum_ k  e.  x  ( vol* `  B ) )  <-> 
( A. k  e.  A  ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  ->  ( vol* `  U_ k  e.  A  B )  <_  sum_ k  e.  A  ( vol* `  B ) ) ) )
25 0le0 10727 . . . . 5  |-  0  <_  0
26 0iun 4349 . . . . . . 7  |-  U_ k  e.  (/)  B  =  (/)
2726fveq2i 5891 . . . . . 6  |-  ( vol* `  U_ k  e.  (/)  B )  =  ( vol* `  (/) )
28 ovol0 22495 . . . . . 6  |-  ( vol* `  (/) )  =  0
2927, 28eqtri 2484 . . . . 5  |-  ( vol* `  U_ k  e.  (/)  B )  =  0
30 sum0 13836 . . . . 5  |-  sum_ k  e.  (/)  ( vol* `  B )  =  0
3125, 29, 303brtr4i 4445 . . . 4  |-  ( vol* `  U_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( vol* `  B )
3231a1i 11 . . 3  |-  ( A. k  e.  (/)  ( B 
C_  RR  /\  ( vol* `  B )  e.  RR )  -> 
( vol* `  U_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( vol* `  B
) )
33 ssun1 3609 . . . . . 6  |-  y  C_  ( y  u.  {
z } )
34 ssralv 3505 . . . . . 6  |-  ( y 
C_  ( y  u. 
{ z } )  ->  ( A. k  e.  ( y  u.  {
z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  ->  A. k  e.  y 
( B  C_  RR  /\  ( vol* `  B )  e.  RR ) ) )
3533, 34ax-mp 5 . . . . 5  |-  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  ->  A. k  e.  y  ( B  C_  RR  /\  ( vol* `  B )  e.  RR ) )
3635imim1i 60 . . . 4  |-  ( ( A. k  e.  y  ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  ->  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) )  ->  ( A. k  e.  ( y  u.  {
z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  -> 
( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )
37 simprl 769 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  A. k  e.  ( y  u.  {
z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR ) )
38 nfcsb1v 3391 . . . . . . . . . . . . . . . 16  |-  F/_ k [_ m  /  k ]_ B
39 nfcv 2603 . . . . . . . . . . . . . . . 16  |-  F/_ k RR
4038, 39nfss 3437 . . . . . . . . . . . . . . 15  |-  F/ k
[_ m  /  k ]_ B  C_  RR
41 nfcv 2603 . . . . . . . . . . . . . . . . 17  |-  F/_ k vol*
4241, 38nffv 5895 . . . . . . . . . . . . . . . 16  |-  F/_ k
( vol* `  [_ m  /  k ]_ B )
4342nfel1 2617 . . . . . . . . . . . . . . 15  |-  F/ k ( vol* `  [_ m  /  k ]_ B )  e.  RR
4440, 43nfan 2022 . . . . . . . . . . . . . 14  |-  F/ k ( [_ m  / 
k ]_ B  C_  RR  /\  ( vol* `  [_ m  /  k ]_ B )  e.  RR )
45 csbeq1a 3384 . . . . . . . . . . . . . . . 16  |-  ( k  =  m  ->  B  =  [_ m  /  k ]_ B )
4645sseq1d 3471 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  ( B  C_  RR  <->  [_ m  / 
k ]_ B  C_  RR ) )
4745fveq2d 5892 . . . . . . . . . . . . . . . 16  |-  ( k  =  m  ->  ( vol* `  B )  =  ( vol* `  [_ m  /  k ]_ B ) )
4847eleq1d 2524 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  (
( vol* `  B )  e.  RR  <->  ( vol* `  [_ m  /  k ]_ B
)  e.  RR ) )
4946, 48anbi12d 722 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  (
( B  C_  RR  /\  ( vol* `  B )  e.  RR ) 
<->  ( [_ m  / 
k ]_ B  C_  RR  /\  ( vol* `  [_ m  /  k ]_ B )  e.  RR ) ) )
5044, 49rspc 3156 . . . . . . . . . . . . 13  |-  ( m  e.  ( y  u. 
{ z } )  ->  ( A. k  e.  ( y  u.  {
z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  -> 
( [_ m  /  k ]_ B  C_  RR  /\  ( vol* `  [_ m  /  k ]_ B
)  e.  RR ) ) )
5137, 50mpan9 476 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  (
y  u.  { z } ) ( B 
C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_ 
sum_ k  e.  y  ( vol* `  B ) ) )  /\  m  e.  ( y  u.  { z } ) )  -> 
( [_ m  /  k ]_ B  C_  RR  /\  ( vol* `  [_ m  /  k ]_ B
)  e.  RR ) )
5251simpld 465 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  (
y  u.  { z } ) ( B 
C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_ 
sum_ k  e.  y  ( vol* `  B ) ) )  /\  m  e.  ( y  u.  { z } ) )  ->  [_ m  /  k ]_ B  C_  RR )
5352ralrimiva 2814 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  A. m  e.  ( y  u.  {
z } ) [_ m  /  k ]_ B  C_  RR )
54 iunss 4333 . . . . . . . . . 10  |-  ( U_ m  e.  ( y  u.  { z } )
[_ m  /  k ]_ B  C_  RR  <->  A. m  e.  ( y  u.  {
z } ) [_ m  /  k ]_ B  C_  RR )
5553, 54sylibr 217 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  U_ m  e.  ( y  u.  {
z } ) [_ m  /  k ]_ B  C_  RR )
56 iunss1 4304 . . . . . . . . . . . . 13  |-  ( y 
C_  ( y  u. 
{ z } )  ->  U_ m  e.  y 
[_ m  /  k ]_ B  C_  U_ m  e.  ( y  u.  {
z } ) [_ m  /  k ]_ B
)
5733, 56ax-mp 5 . . . . . . . . . . . 12  |-  U_ m  e.  y  [_ m  / 
k ]_ B  C_  U_ m  e.  ( y  u.  {
z } ) [_ m  /  k ]_ B
5857, 55syl5ss 3455 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  U_ m  e.  y  [_ m  / 
k ]_ B  C_  RR )
59 simpll 765 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  y  e.  Fin )
60 elun1 3613 . . . . . . . . . . . . 13  |-  ( m  e.  y  ->  m  e.  ( y  u.  {
z } ) )
6151simprd 469 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  (
y  u.  { z } ) ( B 
C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_ 
sum_ k  e.  y  ( vol* `  B ) ) )  /\  m  e.  ( y  u.  { z } ) )  -> 
( vol* `  [_ m  /  k ]_ B )  e.  RR )
6260, 61sylan2 481 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  (
y  u.  { z } ) ( B 
C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_ 
sum_ k  e.  y  ( vol* `  B ) ) )  /\  m  e.  y )  ->  ( vol* `  [_ m  / 
k ]_ B )  e.  RR )
6359, 62fsumrecl 13849 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  sum_ m  e.  y  ( vol* `  [_ m  /  k ]_ B )  e.  RR )
64 simprr 771 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B
) )
65 nfcv 2603 . . . . . . . . . . . . . 14  |-  F/_ m B
6665, 38, 45cbviun 4329 . . . . . . . . . . . . 13  |-  U_ k  e.  y  B  =  U_ m  e.  y  [_ m  /  k ]_ B
6766fveq2i 5891 . . . . . . . . . . . 12  |-  ( vol* `  U_ k  e.  y  B )  =  ( vol* `  U_ m  e.  y  [_ m  /  k ]_ B
)
68 nfcv 2603 . . . . . . . . . . . . 13  |-  F/_ m
( vol* `  B )
6968, 42, 47cbvsumi 13812 . . . . . . . . . . . 12  |-  sum_ k  e.  y  ( vol* `  B )  = 
sum_ m  e.  y 
( vol* `  [_ m  /  k ]_ B )
7064, 67, 693brtr3g 4448 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( vol* `  U_ m  e.  y  [_ m  / 
k ]_ B )  <_  sum_ m  e.  y  ( vol* `  [_ m  /  k ]_ B
) )
71 ovollecl 22485 . . . . . . . . . . 11  |-  ( (
U_ m  e.  y 
[_ m  /  k ]_ B  C_  RR  /\  sum_
m  e.  y  ( vol* `  [_ m  /  k ]_ B
)  e.  RR  /\  ( vol* `  U_ m  e.  y  [_ m  / 
k ]_ B )  <_  sum_ m  e.  y  ( vol* `  [_ m  /  k ]_ B
) )  ->  ( vol* `  U_ m  e.  y  [_ m  / 
k ]_ B )  e.  RR )
7258, 63, 70, 71syl3anc 1276 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( vol* `  U_ m  e.  y  [_ m  / 
k ]_ B )  e.  RR )
73 ssun2 3610 . . . . . . . . . . . . 13  |-  { z }  C_  ( y  u.  { z } )
74 ssnid 4009 . . . . . . . . . . . . 13  |-  z  e. 
{ z }
7573, 74sselii 3441 . . . . . . . . . . . 12  |-  z  e.  ( y  u.  {
z } )
76 nfcsb1v 3391 . . . . . . . . . . . . . . 15  |-  F/_ k [_ z  /  k ]_ B
7776, 39nfss 3437 . . . . . . . . . . . . . 14  |-  F/ k
[_ z  /  k ]_ B  C_  RR
7841, 76nffv 5895 . . . . . . . . . . . . . . 15  |-  F/_ k
( vol* `  [_ z  /  k ]_ B )
7978nfel1 2617 . . . . . . . . . . . . . 14  |-  F/ k ( vol* `  [_ z  /  k ]_ B )  e.  RR
8077, 79nfan 2022 . . . . . . . . . . . . 13  |-  F/ k ( [_ z  / 
k ]_ B  C_  RR  /\  ( vol* `  [_ z  /  k ]_ B )  e.  RR )
81 csbeq1a 3384 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  B  =  [_ z  /  k ]_ B )
8281sseq1d 3471 . . . . . . . . . . . . . 14  |-  ( k  =  z  ->  ( B  C_  RR  <->  [_ z  / 
k ]_ B  C_  RR ) )
8381fveq2d 5892 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  ( vol* `  B )  =  ( vol* `  [_ z  /  k ]_ B ) )
8483eleq1d 2524 . . . . . . . . . . . . . 14  |-  ( k  =  z  ->  (
( vol* `  B )  e.  RR  <->  ( vol* `  [_ z  /  k ]_ B
)  e.  RR ) )
8582, 84anbi12d 722 . . . . . . . . . . . . 13  |-  ( k  =  z  ->  (
( B  C_  RR  /\  ( vol* `  B )  e.  RR ) 
<->  ( [_ z  / 
k ]_ B  C_  RR  /\  ( vol* `  [_ z  /  k ]_ B )  e.  RR ) ) )
8680, 85rspc 3156 . . . . . . . . . . . 12  |-  ( z  e.  ( y  u. 
{ z } )  ->  ( A. k  e.  ( y  u.  {
z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  -> 
( [_ z  /  k ]_ B  C_  RR  /\  ( vol* `  [_ z  /  k ]_ B
)  e.  RR ) ) )
8775, 37, 86mpsyl 65 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( [_ z  /  k ]_ B  C_  RR  /\  ( vol* `  [_ z  / 
k ]_ B )  e.  RR ) )
8887simprd 469 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( vol* `  [_ z  / 
k ]_ B )  e.  RR )
8972, 88readdcld 9696 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( ( vol* `  U_ m  e.  y  [_ m  / 
k ]_ B )  +  ( vol* `  [_ z  /  k ]_ B ) )  e.  RR )
90 iunxun 4377 . . . . . . . . . . . 12  |-  U_ m  e.  ( y  u.  {
z } ) [_ m  /  k ]_ B  =  ( U_ m  e.  y  [_ m  / 
k ]_ B  u.  U_ m  e.  { z } [_ m  /  k ]_ B )
91 vex 3060 . . . . . . . . . . . . . 14  |-  z  e. 
_V
92 csbeq1 3378 . . . . . . . . . . . . . 14  |-  ( m  =  z  ->  [_ m  /  k ]_ B  =  [_ z  /  k ]_ B )
9391, 92iunxsn 4375 . . . . . . . . . . . . 13  |-  U_ m  e.  { z } [_ m  /  k ]_ B  =  [_ z  /  k ]_ B
9493uneq2i 3597 . . . . . . . . . . . 12  |-  ( U_ m  e.  y  [_ m  /  k ]_ B  u.  U_ m  e.  {
z } [_ m  /  k ]_ B
)  =  ( U_ m  e.  y  [_ m  /  k ]_ B  u.  [_ z  /  k ]_ B )
9590, 94eqtri 2484 . . . . . . . . . . 11  |-  U_ m  e.  ( y  u.  {
z } ) [_ m  /  k ]_ B  =  ( U_ m  e.  y  [_ m  / 
k ]_ B  u.  [_ z  /  k ]_ B
)
9695fveq2i 5891 . . . . . . . . . 10  |-  ( vol* `  U_ m  e.  ( y  u.  {
z } ) [_ m  /  k ]_ B
)  =  ( vol* `  ( U_ m  e.  y  [_ m  /  k ]_ B  u.  [_ z  /  k ]_ B ) )
97 ovolun 22501 . . . . . . . . . . 11  |-  ( ( ( U_ m  e.  y  [_ m  / 
k ]_ B  C_  RR  /\  ( vol* `  U_ m  e.  y  [_ m  /  k ]_ B
)  e.  RR )  /\  ( [_ z  /  k ]_ B  C_  RR  /\  ( vol* `  [_ z  / 
k ]_ B )  e.  RR ) )  -> 
( vol* `  ( U_ m  e.  y 
[_ m  /  k ]_ B  u.  [_ z  /  k ]_ B
) )  <_  (
( vol* `  U_ m  e.  y  [_ m  /  k ]_ B
)  +  ( vol* `  [_ z  / 
k ]_ B ) ) )
9858, 72, 87, 97syl21anc 1275 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( vol* `  ( U_ m  e.  y  [_ m  / 
k ]_ B  u.  [_ z  /  k ]_ B
) )  <_  (
( vol* `  U_ m  e.  y  [_ m  /  k ]_ B
)  +  ( vol* `  [_ z  / 
k ]_ B ) ) )
9996, 98syl5eqbr 4450 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( vol* `  U_ m  e.  ( y  u.  {
z } ) [_ m  /  k ]_ B
)  <_  ( ( vol* `  U_ m  e.  y  [_ m  / 
k ]_ B )  +  ( vol* `  [_ z  /  k ]_ B ) ) )
100 ovollecl 22485 . . . . . . . . 9  |-  ( (
U_ m  e.  ( y  u.  { z } ) [_ m  /  k ]_ B  C_  RR  /\  ( ( vol* `  U_ m  e.  y  [_ m  / 
k ]_ B )  +  ( vol* `  [_ z  /  k ]_ B ) )  e.  RR  /\  ( vol* `  U_ m  e.  ( y  u.  {
z } ) [_ m  /  k ]_ B
)  <_  ( ( vol* `  U_ m  e.  y  [_ m  / 
k ]_ B )  +  ( vol* `  [_ z  /  k ]_ B ) ) )  ->  ( vol* `  U_ m  e.  ( y  u.  { z } ) [_ m  /  k ]_ B
)  e.  RR )
10155, 89, 99, 100syl3anc 1276 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( vol* `  U_ m  e.  ( y  u.  {
z } ) [_ m  /  k ]_ B
)  e.  RR )
102 snfi 7676 . . . . . . . . . . 11  |-  { z }  e.  Fin
103 unfi 7864 . . . . . . . . . . 11  |-  ( ( y  e.  Fin  /\  { z }  e.  Fin )  ->  ( y  u. 
{ z } )  e.  Fin )
104102, 103mpan2 682 . . . . . . . . . 10  |-  ( y  e.  Fin  ->  (
y  u.  { z } )  e.  Fin )
105104ad2antrr 737 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( y  u.  { z } )  e.  Fin )
106105, 61fsumrecl 13849 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  sum_ m  e.  ( y  u.  {
z } ) ( vol* `  [_ m  /  k ]_ B
)  e.  RR )
10772, 63, 88, 70leadd1dd 10255 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( ( vol* `  U_ m  e.  y  [_ m  / 
k ]_ B )  +  ( vol* `  [_ z  /  k ]_ B ) )  <_ 
( sum_ m  e.  y  ( vol* `  [_ m  /  k ]_ B )  +  ( vol* `  [_ z  /  k ]_ B
) ) )
108 simplr 767 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  -.  z  e.  y )
109 disjsn 4044 . . . . . . . . . . . 12  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
110108, 109sylibr 217 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( y  i^i  { z } )  =  (/) )
111 eqidd 2463 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( y  u.  { z } )  =  ( y  u. 
{ z } ) )
11261recnd 9695 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  (
y  u.  { z } ) ( B 
C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_ 
sum_ k  e.  y  ( vol* `  B ) ) )  /\  m  e.  ( y  u.  { z } ) )  -> 
( vol* `  [_ m  /  k ]_ B )  e.  CC )
113110, 111, 105, 112fsumsplit 13855 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  sum_ m  e.  ( y  u.  {
z } ) ( vol* `  [_ m  /  k ]_ B
)  =  ( sum_ m  e.  y  ( vol* `  [_ m  / 
k ]_ B )  + 
sum_ m  e.  { z }  ( vol* `  [_ m  /  k ]_ B ) ) )
11488recnd 9695 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( vol* `  [_ z  / 
k ]_ B )  e.  CC )
11592fveq2d 5892 . . . . . . . . . . . . 13  |-  ( m  =  z  ->  ( vol* `  [_ m  /  k ]_ B
)  =  ( vol* `  [_ z  / 
k ]_ B ) )
116115sumsn 13856 . . . . . . . . . . . 12  |-  ( ( z  e.  _V  /\  ( vol* `  [_ z  /  k ]_ B
)  e.  CC )  ->  sum_ m  e.  {
z }  ( vol* `  [_ m  / 
k ]_ B )  =  ( vol* `  [_ z  /  k ]_ B ) )
11791, 114, 116sylancr 674 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  sum_ m  e. 
{ z }  ( vol* `  [_ m  /  k ]_ B
)  =  ( vol* `  [_ z  / 
k ]_ B ) )
118117oveq2d 6331 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( sum_ m  e.  y  ( vol* `  [_ m  / 
k ]_ B )  + 
sum_ m  e.  { z }  ( vol* `  [_ m  /  k ]_ B ) )  =  ( sum_ m  e.  y  ( vol* `  [_ m  /  k ]_ B )  +  ( vol* `  [_ z  /  k ]_ B
) ) )
119113, 118eqtrd 2496 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  sum_ m  e.  ( y  u.  {
z } ) ( vol* `  [_ m  /  k ]_ B
)  =  ( sum_ m  e.  y  ( vol* `  [_ m  / 
k ]_ B )  +  ( vol* `  [_ z  /  k ]_ B ) ) )
120107, 119breqtrrd 4443 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( ( vol* `  U_ m  e.  y  [_ m  / 
k ]_ B )  +  ( vol* `  [_ z  /  k ]_ B ) )  <_  sum_ m  e.  ( y  u.  { z } ) ( vol* `  [_ m  /  k ]_ B ) )
121101, 89, 106, 99, 120letrd 9818 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( vol* `  U_ m  e.  ( y  u.  {
z } ) [_ m  /  k ]_ B
)  <_  sum_ m  e.  ( y  u.  {
z } ) ( vol* `  [_ m  /  k ]_ B
) )
12265, 38, 45cbviun 4329 . . . . . . . 8  |-  U_ k  e.  ( y  u.  {
z } ) B  =  U_ m  e.  ( y  u.  {
z } ) [_ m  /  k ]_ B
123122fveq2i 5891 . . . . . . 7  |-  ( vol* `  U_ k  e.  ( y  u.  {
z } ) B )  =  ( vol* `  U_ m  e.  ( y  u.  {
z } ) [_ m  /  k ]_ B
)
12468, 42, 47cbvsumi 13812 . . . . . . 7  |-  sum_ k  e.  ( y  u.  {
z } ) ( vol* `  B
)  =  sum_ m  e.  ( y  u.  {
z } ) ( vol* `  [_ m  /  k ]_ B
)
125121, 123, 1243brtr4g 4449 . . . . . 6  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  /\  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) ) )  ->  ( vol* `  U_ k  e.  ( y  u.  {
z } ) B )  <_  sum_ k  e.  ( y  u.  {
z } ) ( vol* `  B
) )
126125exp32 614 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( A. k  e.  ( y  u.  { z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  ->  ( ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B
)  ->  ( vol* `  U_ k  e.  ( y  u.  {
z } ) B )  <_  sum_ k  e.  ( y  u.  {
z } ) ( vol* `  B
) ) ) )
127126a2d 29 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( A. k  e.  (
y  u.  { z } ) ( B 
C_  RR  /\  ( vol* `  B )  e.  RR )  -> 
( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) )  -> 
( A. k  e.  ( y  u.  {
z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  -> 
( vol* `  U_ k  e.  ( y  u.  { z } ) B )  <_  sum_ k  e.  ( y  u.  { z } ) ( vol* `  B ) ) ) )
12836, 127syl5 33 . . 3  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( A. k  e.  y 
( B  C_  RR  /\  ( vol* `  B )  e.  RR )  ->  ( vol* `  U_ k  e.  y  B )  <_  sum_ k  e.  y  ( vol* `  B ) )  ->  ( A. k  e.  ( y  u.  {
z } ) ( B  C_  RR  /\  ( vol* `  B )  e.  RR )  -> 
( vol* `  U_ k  e.  ( y  u.  { z } ) B )  <_  sum_ k  e.  ( y  u.  { z } ) ( vol* `  B ) ) ) )
1296, 12, 18, 24, 32, 128findcard2s 7838 . 2  |-  ( A  e.  Fin  ->  ( A. k  e.  A  ( B  C_  RR  /\  ( vol* `  B
)  e.  RR )  ->  ( vol* `  U_ k  e.  A  B )  <_  sum_ k  e.  A  ( vol* `  B ) ) )
130129imp 435 1  |-  ( ( A  e.  Fin  /\  A. k  e.  A  ( B  C_  RR  /\  ( vol* `  B )  e.  RR ) )  ->  ( vol* `  U_ k  e.  A  B )  <_  sum_ k  e.  A  ( vol* `  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 375    = wceq 1455    e. wcel 1898   A.wral 2749   _Vcvv 3057   [_csb 3375    u. cun 3414    i^i cin 3415    C_ wss 3416   (/)c0 3743   {csn 3980   U_ciun 4292   class class class wbr 4416   ` cfv 5601  (class class class)co 6315   Fincfn 7595   CCcc 9563   RRcr 9564   0cc0 9565    + caddc 9568    <_ cle 9702   sum_csu 13801   vol*covol 22462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-inf2 8172  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642  ax-pre-sup 9643
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-fal 1461  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-of 6558  df-om 6720  df-1st 6820  df-2nd 6821  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-1o 7208  df-2o 7209  df-oadd 7212  df-er 7389  df-map 7500  df-en 7596  df-dom 7597  df-sdom 7598  df-fin 7599  df-sup 7982  df-inf 7983  df-oi 8051  df-card 8399  df-cda 8624  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-div 10298  df-nn 10638  df-2 10696  df-3 10697  df-n0 10899  df-z 10967  df-uz 11189  df-q 11294  df-rp 11332  df-xadd 11439  df-ioo 11668  df-ico 11670  df-icc 11671  df-fz 11814  df-fzo 11947  df-fl 12060  df-seq 12246  df-exp 12305  df-hash 12548  df-cj 13211  df-re 13212  df-im 13213  df-sqrt 13347  df-abs 13348  df-clim 13601  df-sum 13802  df-xmet 19012  df-met 19013  df-ovol 22465
This theorem is referenced by:  volfiniun  22549  uniioombllem3a  22591  uniioombllem4  22593  i1fd  22688  i1fadd  22702  i1fmul  22703  volsupnfl  32030
  Copyright terms: Public domain W3C validator