MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolficc Structured version   Unicode version

Theorem ovolficc 21083
Description: Unpack the interval covering property using closed intervals. (Contributed by Mario Carneiro, 16-Mar-2014.)
Assertion
Ref Expression
ovolficc  |-  ( ( A  C_  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A  C_  U. ran  ( [,]  o.  F )  <->  A. z  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) ) ) )
Distinct variable groups:    z, n, A    n, F, z

Proof of Theorem ovolficc
StepHypRef Expression
1 iccf 11504 . . . . . 6  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
2 inss2 3678 . . . . . . . 8  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
3 rexpssxrxp 9538 . . . . . . . 8  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
42, 3sstri 3472 . . . . . . 7  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
5 fss 5674 . . . . . . 7  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  ->  F : NN --> ( RR*  X. 
RR* ) )
64, 5mpan2 671 . . . . . 6  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  F : NN --> ( RR*  X.  RR* ) )
7 fco 5675 . . . . . 6  |-  ( ( [,] : ( RR*  X. 
RR* ) --> ~P RR*  /\  F : NN --> ( RR*  X. 
RR* ) )  -> 
( [,]  o.  F
) : NN --> ~P RR* )
81, 6, 7sylancr 663 . . . . 5  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ( [,]  o.  F ) : NN --> ~P RR* )
9 ffn 5666 . . . . 5  |-  ( ( [,]  o.  F ) : NN --> ~P RR*  ->  ( [,]  o.  F
)  Fn  NN )
10 fniunfv 6072 . . . . 5  |-  ( ( [,]  o.  F )  Fn  NN  ->  U_ n  e.  NN  ( ( [,] 
o.  F ) `  n )  =  U. ran  ( [,]  o.  F
) )
118, 9, 103syl 20 . . . 4  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U_ n  e.  NN  ( ( [,] 
o.  F ) `  n )  =  U. ran  ( [,]  o.  F
) )
1211sseq2d 3491 . . 3  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ( A  C_  U_ n  e.  NN  ( ( [,] 
o.  F ) `  n )  <->  A  C_  U. ran  ( [,]  o.  F ) ) )
1312adantl 466 . 2  |-  ( ( A  C_  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A  C_  U_ n  e.  NN  ( ( [,] 
o.  F ) `  n )  <->  A  C_  U. ran  ( [,]  o.  F ) ) )
14 dfss3 3453 . . 3  |-  ( A 
C_  U_ n  e.  NN  ( ( [,]  o.  F ) `  n
)  <->  A. z  e.  A  z  e.  U_ n  e.  NN  ( ( [,] 
o.  F ) `  n ) )
15 ssel2 3458 . . . . . 6  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  z  e.  RR )
16 eliun 4282 . . . . . . 7  |-  ( z  e.  U_ n  e.  NN  ( ( [,] 
o.  F ) `  n )  <->  E. n  e.  NN  z  e.  ( ( [,]  o.  F
) `  n )
)
17 fvco3 5876 . . . . . . . . . . . . 13  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( [,]  o.  F
) `  n )  =  ( [,] `  ( F `  n )
) )
18 ffvelrn 5949 . . . . . . . . . . . . . . . . 17  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  ( F `  n )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
192, 18sseldi 3461 . . . . . . . . . . . . . . . 16  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  ( F `  n )  e.  ( RR  X.  RR ) )
20 1st2nd2 6722 . . . . . . . . . . . . . . . 16  |-  ( ( F `  n )  e.  ( RR  X.  RR )  ->  ( F `
 n )  = 
<. ( 1st `  ( F `  n )
) ,  ( 2nd `  ( F `  n
) ) >. )
2119, 20syl 16 . . . . . . . . . . . . . . 15  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  ( F `  n )  =  <. ( 1st `  ( F `  n )
) ,  ( 2nd `  ( F `  n
) ) >. )
2221fveq2d 5802 . . . . . . . . . . . . . 14  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  ( [,] `  ( F `  n ) )  =  ( [,] `  <. ( 1st `  ( F `
 n ) ) ,  ( 2nd `  ( F `  n )
) >. ) )
23 df-ov 6202 . . . . . . . . . . . . . 14  |-  ( ( 1st `  ( F `
 n ) ) [,] ( 2nd `  ( F `  n )
) )  =  ( [,] `  <. ( 1st `  ( F `  n ) ) ,  ( 2nd `  ( F `  n )
) >. )
2422, 23syl6eqr 2513 . . . . . . . . . . . . 13  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  ( [,] `  ( F `  n ) )  =  ( ( 1st `  ( F `  n )
) [,] ( 2nd `  ( F `  n
) ) ) )
2517, 24eqtrd 2495 . . . . . . . . . . . 12  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( [,]  o.  F
) `  n )  =  ( ( 1st `  ( F `  n
) ) [,] ( 2nd `  ( F `  n ) ) ) )
2625eleq2d 2524 . . . . . . . . . . 11  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
z  e.  ( ( [,]  o.  F ) `
 n )  <->  z  e.  ( ( 1st `  ( F `  n )
) [,] ( 2nd `  ( F `  n
) ) ) ) )
27 ovolfcl 21081 . . . . . . . . . . . 12  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( 1st `  ( F `  n ) )  <_ 
( 2nd `  ( F `  n )
) ) )
28 elicc2 11470 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR )  -> 
( z  e.  ( ( 1st `  ( F `  n )
) [,] ( 2nd `  ( F `  n
) ) )  <->  ( z  e.  RR  /\  ( 1st `  ( F `  n
) )  <_  z  /\  z  <_  ( 2nd `  ( F `  n
) ) ) ) )
29 3anass 969 . . . . . . . . . . . . . 14  |-  ( ( z  e.  RR  /\  ( 1st `  ( F `
 n ) )  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) )  <->  ( z  e.  RR  /\  ( ( 1st `  ( F `
 n ) )  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) ) ) )
3028, 29syl6bb 261 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR )  -> 
( z  e.  ( ( 1st `  ( F `  n )
) [,] ( 2nd `  ( F `  n
) ) )  <->  ( z  e.  RR  /\  ( ( 1st `  ( F `
 n ) )  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) ) ) ) )
31303adant3 1008 . . . . . . . . . . . 12  |-  ( ( ( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( 1st `  ( F `  n ) )  <_ 
( 2nd `  ( F `  n )
) )  ->  (
z  e.  ( ( 1st `  ( F `
 n ) ) [,] ( 2nd `  ( F `  n )
) )  <->  ( z  e.  RR  /\  ( ( 1st `  ( F `
 n ) )  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) ) ) ) )
3227, 31syl 16 . . . . . . . . . . 11  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
z  e.  ( ( 1st `  ( F `
 n ) ) [,] ( 2nd `  ( F `  n )
) )  <->  ( z  e.  RR  /\  ( ( 1st `  ( F `
 n ) )  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) ) ) ) )
3326, 32bitrd 253 . . . . . . . . . 10  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
z  e.  ( ( [,]  o.  F ) `
 n )  <->  ( z  e.  RR  /\  ( ( 1st `  ( F `
 n ) )  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) ) ) ) )
3433adantll 713 . . . . . . . . 9  |-  ( ( ( z  e.  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  /\  n  e.  NN )  ->  ( z  e.  ( ( [,]  o.  F
) `  n )  <->  ( z  e.  RR  /\  ( ( 1st `  ( F `  n )
)  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) ) ) ) )
35 simpll 753 . . . . . . . . . 10  |-  ( ( ( z  e.  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  /\  n  e.  NN )  ->  z  e.  RR )
3635biantrurd 508 . . . . . . . . 9  |-  ( ( ( z  e.  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  /\  n  e.  NN )  ->  ( ( ( 1st `  ( F `  n
) )  <_  z  /\  z  <_  ( 2nd `  ( F `  n
) ) )  <->  ( z  e.  RR  /\  ( ( 1st `  ( F `
 n ) )  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) ) ) ) )
3734, 36bitr4d 256 . . . . . . . 8  |-  ( ( ( z  e.  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  /\  n  e.  NN )  ->  ( z  e.  ( ( [,]  o.  F
) `  n )  <->  ( ( 1st `  ( F `  n )
)  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) ) ) )
3837rexbidva 2861 . . . . . . 7  |-  ( ( z  e.  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( E. n  e.  NN  z  e.  ( ( [,]  o.  F
) `  n )  <->  E. n  e.  NN  (
( 1st `  ( F `  n )
)  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) ) ) )
3916, 38syl5bb 257 . . . . . 6  |-  ( ( z  e.  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( z  e.  U_ n  e.  NN  (
( [,]  o.  F
) `  n )  <->  E. n  e.  NN  (
( 1st `  ( F `  n )
)  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) ) ) )
4015, 39sylan 471 . . . . 5  |-  ( ( ( A  C_  RR  /\  z  e.  A )  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  ->  ( z  e. 
U_ n  e.  NN  ( ( [,]  o.  F ) `  n
)  <->  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) ) ) )
4140an32s 802 . . . 4  |-  ( ( ( A  C_  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  /\  z  e.  A )  ->  ( z  e.  U_ n  e.  NN  (
( [,]  o.  F
) `  n )  <->  E. n  e.  NN  (
( 1st `  ( F `  n )
)  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) ) ) )
4241ralbidva 2843 . . 3  |-  ( ( A  C_  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A. z  e.  A  z  e.  U_ n  e.  NN  (
( [,]  o.  F
) `  n )  <->  A. z  e.  A  E. n  e.  NN  (
( 1st `  ( F `  n )
)  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) ) ) )
4314, 42syl5bb 257 . 2  |-  ( ( A  C_  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A  C_  U_ n  e.  NN  ( ( [,] 
o.  F ) `  n )  <->  A. z  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <_  z  /\  z  <_  ( 2nd `  ( F `  n
) ) ) ) )
4413, 43bitr3d 255 1  |-  ( ( A  C_  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A  C_  U. ran  ( [,]  o.  F )  <->  A. z  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <_  z  /\  z  <_  ( 2nd `  ( F `  n )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2798   E.wrex 2799    i^i cin 3434    C_ wss 3435   ~Pcpw 3967   <.cop 3990   U.cuni 4198   U_ciun 4278   class class class wbr 4399    X. cxp 4945   ran crn 4948    o. ccom 4951    Fn wfn 5520   -->wf 5521   ` cfv 5525  (class class class)co 6199   1stc1st 6684   2ndc2nd 6685   RRcr 9391   RR*cxr 9527    <_ cle 9529   NNcn 10432   [,]cicc 11413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-pre-lttri 9466  ax-pre-lttrn 9467
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-po 4748  df-so 4749  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-1st 6686  df-2nd 6687  df-er 7210  df-en 7420  df-dom 7421  df-sdom 7422  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-icc 11417
This theorem is referenced by:  ovollb2lem  21102  ovolctb  21104  ovolicc1  21130  ioombl1lem4  21174
  Copyright terms: Public domain W3C validator