MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolctb Structured version   Unicode version

Theorem ovolctb 22067
Description: The volume of a denumerable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
ovolctb  |-  ( ( A  C_  RR  /\  A  ~~  NN )  ->  ( vol* `  A )  =  0 )

Proof of Theorem ovolctb
Dummy variables  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensym 7557 . 2  |-  ( A 
~~  NN  ->  NN  ~~  A )
2 bren 7518 . . . 4  |-  ( NN 
~~  A  <->  E. f 
f : NN -1-1-onto-> A )
3 simpll 751 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  A  C_  RR )
4 f1of 5798 . . . . . . . . . . . . . . . . 17  |-  ( f : NN -1-1-onto-> A  ->  f : NN
--> A )
54adantl 464 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  f : NN --> A )
65ffvelrnda 6007 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  (
f `  x )  e.  A )
73, 6sseldd 3490 . . . . . . . . . . . . . 14  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  (
f `  x )  e.  RR )
87leidd 10115 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  (
f `  x )  <_  ( f `  x
) )
9 df-br 4440 . . . . . . . . . . . . 13  |-  ( ( f `  x )  <_  ( f `  x )  <->  <. ( f `
 x ) ,  ( f `  x
) >.  e.  <_  )
108, 9sylib 196 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  <. (
f `  x ) ,  ( f `  x ) >.  e.  <_  )
11 opelxpi 5020 . . . . . . . . . . . . 13  |-  ( ( ( f `  x
)  e.  RR  /\  ( f `  x
)  e.  RR )  ->  <. ( f `  x ) ,  ( f `  x )
>.  e.  ( RR  X.  RR ) )
127, 7, 11syl2anc 659 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  <. (
f `  x ) ,  ( f `  x ) >.  e.  ( RR  X.  RR ) )
1310, 12elind 3674 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  <. (
f `  x ) ,  ( f `  x ) >.  e.  (  <_  i^i  ( RR  X.  RR ) ) )
14 df-ov 6273 . . . . . . . . . . . . 13  |-  ( ( f `  x )  _I  ( f `  x ) )  =  (  _I  `  <. ( f `  x ) ,  ( f `  x ) >. )
15 opex 4701 . . . . . . . . . . . . . 14  |-  <. (
f `  x ) ,  ( f `  x ) >.  e.  _V
16 fvi 5905 . . . . . . . . . . . . . 14  |-  ( <.
( f `  x
) ,  ( f `
 x ) >.  e.  _V  ->  (  _I  ` 
<. ( f `  x
) ,  ( f `
 x ) >.
)  =  <. (
f `  x ) ,  ( f `  x ) >. )
1715, 16ax-mp 5 . . . . . . . . . . . . 13  |-  (  _I 
`  <. ( f `  x ) ,  ( f `  x )
>. )  =  <. ( f `  x ) ,  ( f `  x ) >.
1814, 17eqtri 2483 . . . . . . . . . . . 12  |-  ( ( f `  x )  _I  ( f `  x ) )  = 
<. ( f `  x
) ,  ( f `
 x ) >.
1918mpteq2i 4522 . . . . . . . . . . 11  |-  ( x  e.  NN  |->  ( ( f `  x )  _I  ( f `  x ) ) )  =  ( x  e.  NN  |->  <. ( f `  x ) ,  ( f `  x )
>. )
2013, 19fmptd 6031 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  (
x  e.  NN  |->  ( ( f `  x
)  _I  ( f `
 x ) ) ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
21 nnex 10537 . . . . . . . . . . . . 13  |-  NN  e.  _V
2221a1i 11 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  NN  e.  _V )
237recnd 9611 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  (
f `  x )  e.  CC )
245feqmptd 5901 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  f  =  ( x  e.  NN  |->  ( f `  x ) ) )
2522, 23, 23, 24, 24offval2 6529 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  (
f  oF  _I  f )  =  ( x  e.  NN  |->  ( ( f `  x
)  _I  ( f `
 x ) ) ) )
2625feq1d 5699 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  (
( f  oF  _I  f ) : NN --> (  <_  i^i  ( RR  X.  RR ) )  <->  ( x  e.  NN  |->  ( ( f `
 x )  _I  ( f `  x
) ) ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) ) )
2720, 26mpbird 232 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  (
f  oF  _I  f ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
28 f1ofo 5805 . . . . . . . . . . . . . . . 16  |-  ( f : NN -1-1-onto-> A  ->  f : NN -onto-> A )
2928adantl 464 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  f : NN -onto-> A )
30 forn 5780 . . . . . . . . . . . . . . 15  |-  ( f : NN -onto-> A  ->  ran  f  =  A
)
3129, 30syl 16 . . . . . . . . . . . . . 14  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  ran  f  =  A )
3231eleq2d 2524 . . . . . . . . . . . . 13  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  (
y  e.  ran  f  <->  y  e.  A ) )
33 f1ofn 5799 . . . . . . . . . . . . . . 15  |-  ( f : NN -1-1-onto-> A  ->  f  Fn  NN )
3433adantl 464 . . . . . . . . . . . . . 14  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  f  Fn  NN )
35 fvelrnb 5895 . . . . . . . . . . . . . 14  |-  ( f  Fn  NN  ->  (
y  e.  ran  f  <->  E. x  e.  NN  (
f `  x )  =  y ) )
3634, 35syl 16 . . . . . . . . . . . . 13  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  (
y  e.  ran  f  <->  E. x  e.  NN  (
f `  x )  =  y ) )
3732, 36bitr3d 255 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  (
y  e.  A  <->  E. x  e.  NN  ( f `  x )  =  y ) )
3825, 19syl6eq 2511 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  (
f  oF  _I  f )  =  ( x  e.  NN  |->  <.
( f `  x
) ,  ( f `
 x ) >.
) )
3938fveq1d 5850 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  (
( f  oF  _I  f ) `  x )  =  ( ( x  e.  NN  |->  <. ( f `  x
) ,  ( f `
 x ) >.
) `  x )
)
40 eqid 2454 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  NN  |->  <. (
f `  x ) ,  ( f `  x ) >. )  =  ( x  e.  NN  |->  <. ( f `  x ) ,  ( f `  x )
>. )
4140fvmpt2 5939 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  NN  /\  <.
( f `  x
) ,  ( f `
 x ) >.  e.  _V )  ->  (
( x  e.  NN  |->  <. ( f `  x
) ,  ( f `
 x ) >.
) `  x )  =  <. ( f `  x ) ,  ( f `  x )
>. )
4215, 41mpan2 669 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  NN  ->  (
( x  e.  NN  |->  <. ( f `  x
) ,  ( f `
 x ) >.
) `  x )  =  <. ( f `  x ) ,  ( f `  x )
>. )
4339, 42sylan9eq 2515 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  (
( f  oF  _I  f ) `  x )  =  <. ( f `  x ) ,  ( f `  x ) >. )
4443fveq2d 5852 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  ( 1st `  ( ( f  oF  _I  f
) `  x )
)  =  ( 1st `  <. ( f `  x ) ,  ( f `  x )
>. ) )
45 fvex 5858 . . . . . . . . . . . . . . . . . 18  |-  ( f `
 x )  e. 
_V
4645, 45op1st 6781 . . . . . . . . . . . . . . . . 17  |-  ( 1st `  <. ( f `  x ) ,  ( f `  x )
>. )  =  (
f `  x )
4744, 46syl6eq 2511 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  ( 1st `  ( ( f  oF  _I  f
) `  x )
)  =  ( f `
 x ) )
4847, 8eqbrtrd 4459 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  ( 1st `  ( ( f  oF  _I  f
) `  x )
)  <_  ( f `  x ) )
4943fveq2d 5852 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  ( 2nd `  ( ( f  oF  _I  f
) `  x )
)  =  ( 2nd `  <. ( f `  x ) ,  ( f `  x )
>. ) )
5045, 45op2nd 6782 . . . . . . . . . . . . . . . . 17  |-  ( 2nd `  <. ( f `  x ) ,  ( f `  x )
>. )  =  (
f `  x )
5149, 50syl6eq 2511 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  ( 2nd `  ( ( f  oF  _I  f
) `  x )
)  =  ( f `
 x ) )
528, 51breqtrrd 4465 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  (
f `  x )  <_  ( 2nd `  (
( f  oF  _I  f ) `  x ) ) )
5348, 52jca 530 . . . . . . . . . . . . . 14  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  (
( 1st `  (
( f  oF  _I  f ) `  x ) )  <_ 
( f `  x
)  /\  ( f `  x )  <_  ( 2nd `  ( ( f  oF  _I  f
) `  x )
) ) )
54 breq2 4443 . . . . . . . . . . . . . . 15  |-  ( ( f `  x )  =  y  ->  (
( 1st `  (
( f  oF  _I  f ) `  x ) )  <_ 
( f `  x
)  <->  ( 1st `  (
( f  oF  _I  f ) `  x ) )  <_ 
y ) )
55 breq1 4442 . . . . . . . . . . . . . . 15  |-  ( ( f `  x )  =  y  ->  (
( f `  x
)  <_  ( 2nd `  ( ( f  oF  _I  f ) `
 x ) )  <-> 
y  <_  ( 2nd `  ( ( f  oF  _I  f ) `
 x ) ) ) )
5654, 55anbi12d 708 . . . . . . . . . . . . . 14  |-  ( ( f `  x )  =  y  ->  (
( ( 1st `  (
( f  oF  _I  f ) `  x ) )  <_ 
( f `  x
)  /\  ( f `  x )  <_  ( 2nd `  ( ( f  oF  _I  f
) `  x )
) )  <->  ( ( 1st `  ( ( f  oF  _I  f
) `  x )
)  <_  y  /\  y  <_  ( 2nd `  (
( f  oF  _I  f ) `  x ) ) ) ) )
5753, 56syl5ibcom 220 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  (
( f `  x
)  =  y  -> 
( ( 1st `  (
( f  oF  _I  f ) `  x ) )  <_ 
y  /\  y  <_  ( 2nd `  ( ( f  oF  _I  f ) `  x
) ) ) ) )
5857reximdva 2929 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  ( E. x  e.  NN  ( f `  x
)  =  y  ->  E. x  e.  NN  ( ( 1st `  (
( f  oF  _I  f ) `  x ) )  <_ 
y  /\  y  <_  ( 2nd `  ( ( f  oF  _I  f ) `  x
) ) ) ) )
5937, 58sylbid 215 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  (
y  e.  A  ->  E. x  e.  NN  ( ( 1st `  (
( f  oF  _I  f ) `  x ) )  <_ 
y  /\  y  <_  ( 2nd `  ( ( f  oF  _I  f ) `  x
) ) ) ) )
6059ralrimiv 2866 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  A. y  e.  A  E. x  e.  NN  ( ( 1st `  ( ( f  oF  _I  f ) `
 x ) )  <_  y  /\  y  <_  ( 2nd `  (
( f  oF  _I  f ) `  x ) ) ) )
61 ovolficc 22046 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  (
f  oF  _I  f ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  ->  ( A  C_  U.
ran  ( [,]  o.  ( f  oF  _I  f ) )  <->  A. y  e.  A  E. x  e.  NN  ( ( 1st `  (
( f  oF  _I  f ) `  x ) )  <_ 
y  /\  y  <_  ( 2nd `  ( ( f  oF  _I  f ) `  x
) ) ) ) )
6227, 61syldan 468 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  ( A  C_  U. ran  ( [,]  o.  ( f  oF  _I  f ) )  <->  A. y  e.  A  E. x  e.  NN  ( ( 1st `  (
( f  oF  _I  f ) `  x ) )  <_ 
y  /\  y  <_  ( 2nd `  ( ( f  oF  _I  f ) `  x
) ) ) ) )
6360, 62mpbird 232 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  A  C_ 
U. ran  ( [,]  o.  ( f  oF  _I  f ) ) )
64 eqid 2454 . . . . . . . . . 10  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( f  oF  _I  f
) ) )  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( f  oF  _I  f ) ) )
6564ovollb2 22066 . . . . . . . . 9  |-  ( ( ( f  oF  _I  f ) : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( [,]  o.  ( f  oF  _I  f ) ) )  ->  ( vol* `  A )  <_  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( f  oF  _I  f
) ) ) , 
RR* ,  <  ) )
6627, 63, 65syl2anc 659 . . . . . . . 8  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  ( vol* `  A )  <_  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
f  oF  _I  f ) ) ) ,  RR* ,  <  )
)
67 opelxpi 5020 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f `  x
)  e.  CC  /\  ( f `  x
)  e.  CC )  ->  <. ( f `  x ) ,  ( f `  x )
>.  e.  ( CC  X.  CC ) )
6823, 23, 67syl2anc 659 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  <. (
f `  x ) ,  ( f `  x ) >.  e.  ( CC  X.  CC ) )
69 absf 13252 . . . . . . . . . . . . . . . . . . . 20  |-  abs : CC
--> RR
70 subf 9813 . . . . . . . . . . . . . . . . . . . 20  |-  -  :
( CC  X.  CC )
--> CC
71 fco 5723 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( abs : CC --> RR  /\  -  : ( CC  X.  CC ) --> CC )  -> 
( abs  o.  -  ) : ( CC  X.  CC ) --> RR )
7269, 70, 71mp2an 670 . . . . . . . . . . . . . . . . . . 19  |-  ( abs 
o.  -  ) :
( CC  X.  CC )
--> RR
7372a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  ( abs  o.  -  ) : ( CC  X.  CC )
--> RR )
7473feqmptd 5901 . . . . . . . . . . . . . . . . 17  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  ( abs  o.  -  )  =  ( y  e.  ( CC  X.  CC ) 
|->  ( ( abs  o.  -  ) `  y
) ) )
75 fveq2 5848 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  <. ( f `  x ) ,  ( f `  x )
>.  ->  ( ( abs 
o.  -  ) `  y )  =  ( ( abs  o.  -  ) `  <. ( f `
 x ) ,  ( f `  x
) >. ) )
76 df-ov 6273 . . . . . . . . . . . . . . . . . 18  |-  ( ( f `  x ) ( abs  o.  -  ) ( f `  x ) )  =  ( ( abs  o.  -  ) `  <. ( f `  x ) ,  ( f `  x ) >. )
7775, 76syl6eqr 2513 . . . . . . . . . . . . . . . . 17  |-  ( y  =  <. ( f `  x ) ,  ( f `  x )
>.  ->  ( ( abs 
o.  -  ) `  y )  =  ( ( f `  x
) ( abs  o.  -  ) ( f `
 x ) ) )
7868, 38, 74, 77fmptco 6040 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  (
( abs  o.  -  )  o.  ( f  oF  _I  f ) )  =  ( x  e.  NN  |->  ( ( f `
 x ) ( abs  o.  -  )
( f `  x
) ) ) )
79 cnmet 21445 . . . . . . . . . . . . . . . . . 18  |-  ( abs 
o.  -  )  e.  ( Met `  CC )
80 met0 21012 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs  o.  -  )  e.  ( Met `  CC )  /\  (
f `  x )  e.  CC )  ->  (
( f `  x
) ( abs  o.  -  ) ( f `
 x ) )  =  0 )
8179, 23, 80sylancr 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  /\  x  e.  NN )  ->  (
( f `  x
) ( abs  o.  -  ) ( f `
 x ) )  =  0 )
8281mpteq2dva 4525 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  (
x  e.  NN  |->  ( ( f `  x
) ( abs  o.  -  ) ( f `
 x ) ) )  =  ( x  e.  NN  |->  0 ) )
8378, 82eqtrd 2495 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  (
( abs  o.  -  )  o.  ( f  oF  _I  f ) )  =  ( x  e.  NN  |->  0 ) )
84 fconstmpt 5032 . . . . . . . . . . . . . . 15  |-  ( NN 
X.  { 0 } )  =  ( x  e.  NN  |->  0 )
8583, 84syl6eqr 2513 . . . . . . . . . . . . . 14  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  (
( abs  o.  -  )  o.  ( f  oF  _I  f ) )  =  ( NN  X.  { 0 } ) )
8685seqeq3d 12097 . . . . . . . . . . . . 13  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
f  oF  _I  f ) ) )  =  seq 1 (  +  ,  ( NN 
X.  { 0 } ) ) )
87 1z 10890 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
88 nnuz 11117 . . . . . . . . . . . . . . 15  |-  NN  =  ( ZZ>= `  1 )
8988ser0f 12142 . . . . . . . . . . . . . 14  |-  ( 1  e.  ZZ  ->  seq 1 (  +  , 
( NN  X.  {
0 } ) )  =  ( NN  X.  { 0 } ) )
9087, 89ax-mp 5 . . . . . . . . . . . . 13  |-  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  =  ( NN  X.  {
0 } )
9186, 90syl6eq 2511 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
f  oF  _I  f ) ) )  =  ( NN  X.  { 0 } ) )
9291rneqd 5219 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
f  oF  _I  f ) ) )  =  ran  ( NN 
X.  { 0 } ) )
93 1nn 10542 . . . . . . . . . . . 12  |-  1  e.  NN
94 ne0i 3789 . . . . . . . . . . . 12  |-  ( 1  e.  NN  ->  NN  =/=  (/) )
95 rnxp 5422 . . . . . . . . . . . 12  |-  ( NN  =/=  (/)  ->  ran  ( NN 
X.  { 0 } )  =  { 0 } )
9693, 94, 95mp2b 10 . . . . . . . . . . 11  |-  ran  ( NN  X.  { 0 } )  =  { 0 }
9792, 96syl6eq 2511 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
f  oF  _I  f ) ) )  =  { 0 } )
9897supeq1d 7897 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( f  oF  _I  f ) ) ) ,  RR* ,  <  )  =  sup ( { 0 } ,  RR* ,  <  ) )
99 xrltso 11350 . . . . . . . . . 10  |-  <  Or  RR*
100 0xr 9629 . . . . . . . . . 10  |-  0  e.  RR*
101 supsn 7922 . . . . . . . . . 10  |-  ( (  <  Or  RR*  /\  0  e.  RR* )  ->  sup ( { 0 } ,  RR* ,  <  )  =  0 )
10299, 100, 101mp2an 670 . . . . . . . . 9  |-  sup ( { 0 } ,  RR* ,  <  )  =  0
10398, 102syl6eq 2511 . . . . . . . 8  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( f  oF  _I  f ) ) ) ,  RR* ,  <  )  =  0 )
10466, 103breqtrd 4463 . . . . . . 7  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  ( vol* `  A )  <_  0 )
105 ovolge0 22058 . . . . . . . 8  |-  ( A 
C_  RR  ->  0  <_ 
( vol* `  A ) )
106105adantr 463 . . . . . . 7  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  0  <_  ( vol* `  A ) )
107 ovolcl 22055 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( vol* `  A )  e.  RR* )
108107adantr 463 . . . . . . . 8  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  ( vol* `  A )  e.  RR* )
109 xrletri3 11361 . . . . . . . 8  |-  ( ( ( vol* `  A )  e.  RR*  /\  0  e.  RR* )  ->  ( ( vol* `  A )  =  0  <-> 
( ( vol* `  A )  <_  0  /\  0  <_  ( vol* `  A )
) ) )
110108, 100, 109sylancl 660 . . . . . . 7  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  (
( vol* `  A )  =  0  <-> 
( ( vol* `  A )  <_  0  /\  0  <_  ( vol* `  A )
) ) )
111104, 106, 110mpbir2and 920 . . . . . 6  |-  ( ( A  C_  RR  /\  f : NN -1-1-onto-> A )  ->  ( vol* `  A )  =  0 )
112111ex 432 . . . . 5  |-  ( A 
C_  RR  ->  ( f : NN -1-1-onto-> A  ->  ( vol* `  A )  =  0 ) )
113112exlimdv 1729 . . . 4  |-  ( A 
C_  RR  ->  ( E. f  f : NN -1-1-onto-> A  ->  ( vol* `  A )  =  0 ) )
1142, 113syl5bi 217 . . 3  |-  ( A 
C_  RR  ->  ( NN 
~~  A  ->  ( vol* `  A )  =  0 ) )
115114imp 427 . 2  |-  ( ( A  C_  RR  /\  NN  ~~  A )  ->  ( vol* `  A )  =  0 )
1161, 115sylan2 472 1  |-  ( ( A  C_  RR  /\  A  ~~  NN )  ->  ( vol* `  A )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   _Vcvv 3106    i^i cin 3460    C_ wss 3461   (/)c0 3783   {csn 4016   <.cop 4022   U.cuni 4235   class class class wbr 4439    |-> cmpt 4497    _I cid 4779    Or wor 4788    X. cxp 4986   ran crn 4989    o. ccom 4992    Fn wfn 5565   -->wf 5566   -onto->wfo 5568   -1-1-onto->wf1o 5569   ` cfv 5570  (class class class)co 6270    oFcof 6511   1stc1st 6771   2ndc2nd 6772    ~~ cen 7506   supcsup 7892   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484   RR*cxr 9616    < clt 9617    <_ cle 9618    - cmin 9796   NNcn 10531   ZZcz 10860   [,]cicc 11535    seqcseq 12089   abscabs 13149   Metcme 18599   vol*covol 22040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-q 11184  df-rp 11222  df-xadd 11322  df-ioo 11536  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-sum 13591  df-xmet 18607  df-met 18608  df-ovol 22042
This theorem is referenced by:  ovolq  22068  ovolctb2  22069  ovoliunnfl  30296
  Copyright terms: Public domain W3C validator