MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovol0 Structured version   Visualization version   Unicode version

Theorem ovol0 22524
Description: The empty set has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 17-Mar-2014.)
Assertion
Ref Expression
ovol0  |-  ( vol* `  (/) )  =  0

Proof of Theorem ovol0
StepHypRef Expression
1 0ss 3766 . 2  |-  (/)  C_  RR
2 nnex 10637 . . 3  |-  NN  e.  _V
320dom 7720 . 2  |-  (/)  ~<_  NN
4 ovolctb2 22523 . 2  |-  ( (
(/)  C_  RR  /\  (/)  ~<_  NN )  ->  ( vol* `  (/) )  =  0 )
51, 3, 4mp2an 686 1  |-  ( vol* `  (/) )  =  0
Colors of variables: wff setvar class
Syntax hints:    = wceq 1452    C_ wss 3390   (/)c0 3722   class class class wbr 4395   ` cfv 5589    ~<_ cdom 7585   RRcr 9556   0cc0 9557   NNcn 10631   vol*covol 22491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-xadd 11433  df-ioo 11664  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830  df-xmet 19040  df-met 19041  df-ovol 22494
This theorem is referenced by:  ovolfiniun  22532  ovoliunnul  22538  0mbl  22571  volfiniun  22579  voliunlem3  22584  iccvolcl  22599  ioovolcl  22601  itg1val2  22721  itg11  22728  itg1addlem4  22736  itg1le  22750  itg2cnlem2  22799  itgsplitioo  22874  volmeas  29127  mblfinlem3  32043  ismblfin  32045  ovoliunnfl  32046  voliunnfl  32048  volsupnfl  32049  areacirc  32101  arearect  36171  areaquad  36172  vol0  37933
  Copyright terms: Public domain W3C validator