Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt4g Structured version   Unicode version

Theorem ovmpt4g 6433
 Description: Value of a function given by the "maps to" notation. (This is the operation analog of fvmpt2 5973.) (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
ovmpt4g.3
Assertion
Ref Expression
ovmpt4g
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)   (,)   (,)   (,)

Proof of Theorem ovmpt4g
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elisset 3098 . . 3
2 moeq 3253 . . . . . . 7
32a1i 11 . . . . . 6
4 ovmpt4g.3 . . . . . . 7
5 df-mpt2 6310 . . . . . . 7
64, 5eqtri 2458 . . . . . 6
73, 6ovidi 6429 . . . . 5
8 eqeq2 2444 . . . . 5
97, 8mpbidi 219 . . . 4
109exlimdv 1771 . . 3
111, 10syl5 33 . 2
12113impia 1202 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 370   w3a 982   wceq 1437  wex 1659   wcel 1870  wmo 2267  (class class class)co 6305  coprab 6306   cmpt2 6307 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pr 4661 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-iota 5565  df-fun 5603  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310 This theorem is referenced by:  ovmpt2s  6434  ov2gf  6435  ovmpt2dxf  6436  ovmpt2df  6442  ofmres  6803  fnmpt2ovd  6885  mapxpen  7744  pwfseqlem2  9083  pwfseqlem3  9084  fullfunc  15762  fthfunc  15763  prfcl  16039  curf1cl  16064  curfcl  16068  hofcl  16095  gsum2d2lem  17540  gsum2d2  17541  gsumcom2  17542  dprdval  17570  dprd2d2  17612  cnmpt21  20617  cnmpt2t  20619  cnmptcom  20624  cnmpt2k  20634  xkocnv  20760  madjusmdetlem1  28492  madjusmdetlem3  28494  sdclem2  31774  aovmpt4g  38092  ovmpt2rdxf  38879
 Copyright terms: Public domain W3C validator