MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt2x Structured version   Unicode version

Theorem ovmpt2x 6217
Description: The value of an operation class abstraction. Variant of ovmpt2ga 6218 which does not require  D and  x to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
ovmpt2x.1  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
ovmpt2x.2  |-  ( x  =  A  ->  D  =  L )
ovmpt2x.3  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
Assertion
Ref Expression
ovmpt2x  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  H )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, L, y   
x, S, y
Allowed substitution hints:    D( x, y)    R( x, y)    F( x, y)    H( x, y)

Proof of Theorem ovmpt2x
StepHypRef Expression
1 elex 2979 . 2  |-  ( S  e.  H  ->  S  e.  _V )
2 ovmpt2x.3 . . . 4  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
32a1i 11 . . 3  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
4 ovmpt2x.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
54adantl 466 . . 3  |-  ( ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
6 ovmpt2x.2 . . . 4  |-  ( x  =  A  ->  D  =  L )
76adantl 466 . . 3  |-  ( ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  /\  x  =  A )  ->  D  =  L )
8 simp1 988 . . 3  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  ->  A  e.  C )
9 simp2 989 . . 3  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  ->  B  e.  L )
10 simp3 990 . . 3  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  ->  S  e.  _V )
113, 5, 7, 8, 9, 10ovmpt2dx 6215 . 2  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  ->  ( A F B )  =  S )
121, 11syl3an3 1253 1  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  H )  ->  ( A F B )  =  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   _Vcvv 2970  (class class class)co 6089    e. cmpt2 6091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pr 4529
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3185  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-br 4291  df-opab 4349  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-iota 5379  df-fun 5418  df-fv 5424  df-ov 6092  df-oprab 6093  df-mpt2 6094
This theorem is referenced by:  evls1fval  17752  ptbasfi  19152  tglngval  22983  igenval  28858  lcoop  30942
  Copyright terms: Public domain W3C validator