MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovigg Structured version   Unicode version

Theorem ovigg 6297
Description: The value of an operation class abstraction. Compare ovig 6298. The condition  ( x  e.  R  /\  y  e.  S ) is been removed. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovigg.1  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
ovigg.4  |-  E* z ph
ovigg.5  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
Assertion
Ref Expression
ovigg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ps  ->  ( A F B )  =  C ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    ps, x, y, z
Allowed substitution hints:    ph( x, y, z)    F( x, y, z)    V( x, y, z)    W( x, y, z)    X( x, y, z)

Proof of Theorem ovigg
StepHypRef Expression
1 ovigg.1 . . 3  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
21eloprabga 6263 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ps )
)
3 df-ov 6179 . . . 4  |-  ( A F B )  =  ( F `  <. A ,  B >. )
4 ovigg.5 . . . . 5  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
54fveq1i 5776 . . . 4  |-  ( F `
 <. A ,  B >. )  =  ( {
<. <. x ,  y
>. ,  z >.  | 
ph } `  <. A ,  B >. )
63, 5eqtri 2478 . . 3  |-  ( A F B )  =  ( { <. <. x ,  y >. ,  z
>.  |  ph } `  <. A ,  B >. )
7 ovigg.4 . . . . 5  |-  E* z ph
87funoprab 6276 . . . 4  |-  Fun  { <. <. x ,  y
>. ,  z >.  | 
ph }
9 funopfv 5816 . . . 4  |-  ( Fun 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  ->  ( { <. <. x ,  y
>. ,  z >.  | 
ph } `  <. A ,  B >. )  =  C ) )
108, 9ax-mp 5 . . 3  |-  ( <. <. A ,  B >. ,  C >.  e.  { <. <.
x ,  y >. ,  z >.  |  ph }  ->  ( { <. <.
x ,  y >. ,  z >.  |  ph } `  <. A ,  B >. )  =  C )
116, 10syl5eq 2502 . 2  |-  ( <. <. A ,  B >. ,  C >.  e.  { <. <.
x ,  y >. ,  z >.  |  ph }  ->  ( A F B )  =  C )
122, 11syl6bir 229 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ps  ->  ( A F B )  =  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 965    = wceq 1370    e. wcel 1757   E*wmo 2260   <.cop 3967   Fun wfun 5496   ` cfv 5502  (class class class)co 6176   {coprab 6177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-sep 4497  ax-nul 4505  ax-pr 4615
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-ral 2797  df-rex 2798  df-rab 2801  df-v 3056  df-sbc 3271  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-nul 3722  df-if 3876  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4176  df-br 4377  df-opab 4435  df-id 4720  df-xp 4930  df-rel 4931  df-cnv 4932  df-co 4933  df-dm 4934  df-iota 5465  df-fun 5504  df-fv 5510  df-ov 6179  df-oprab 6180
This theorem is referenced by:  ovig  6298  joinval  15263  meetval  15277
  Copyright terms: Public domain W3C validator