Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovelimab Structured version   Unicode version

Theorem ovelimab 6434
 Description: Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
ovelimab
Distinct variable groups:   ,,   ,,   ,,   ,,   ,,

Proof of Theorem ovelimab
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fvelimab 5905 . 2
2 fveq2 5849 . . . . . 6
3 df-ov 6281 . . . . . 6
42, 3syl6eqr 2461 . . . . 5
54eqeq1d 2404 . . . 4
6 eqcom 2411 . . . 4
75, 6syl6bb 261 . . 3
87rexxp 4966 . 2
91, 8syl6bb 261 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 367   wceq 1405   wcel 1842  wrex 2755   wss 3414  cop 3978   cxp 4821  cima 4826   wfn 5564  cfv 5569  (class class class)co 6278 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pr 4630 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-fv 5577  df-ov 6281 This theorem is referenced by:  dfz2  10923  elq  11229  shsel  26646  ofrn2  27923  eulerpartlemgh  28823
 Copyright terms: Public domain W3C validator