MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ov2gf Structured version   Unicode version

Theorem ov2gf 6214
Description: The value of an operation class abstraction. A version of ovmpt2g 6224 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ov2gf.a  |-  F/_ x A
ov2gf.c  |-  F/_ y A
ov2gf.d  |-  F/_ y B
ov2gf.1  |-  F/_ x G
ov2gf.2  |-  F/_ y S
ov2gf.3  |-  ( x  =  A  ->  R  =  G )
ov2gf.4  |-  ( y  =  B  ->  G  =  S )
ov2gf.5  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
Assertion
Ref Expression
ov2gf  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, C    x, D, y
Allowed substitution hints:    A( x, y)    B( x, y)    R( x, y)    S( x, y)    F( x, y)    G( x, y)    H( x, y)

Proof of Theorem ov2gf
StepHypRef Expression
1 elex 2979 . . 3  |-  ( S  e.  H  ->  S  e.  _V )
2 ov2gf.a . . . 4  |-  F/_ x A
3 ov2gf.c . . . 4  |-  F/_ y A
4 ov2gf.d . . . 4  |-  F/_ y B
5 ov2gf.1 . . . . . 6  |-  F/_ x G
65nfel1 2587 . . . . 5  |-  F/ x  G  e.  _V
7 ov2gf.5 . . . . . . . 8  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
8 nfmpt21 6152 . . . . . . . 8  |-  F/_ x
( x  e.  C ,  y  e.  D  |->  R )
97, 8nfcxfr 2574 . . . . . . 7  |-  F/_ x F
10 nfcv 2577 . . . . . . 7  |-  F/_ x
y
112, 9, 10nfov 6113 . . . . . 6  |-  F/_ x
( A F y )
1211, 5nfeq 2584 . . . . 5  |-  F/ x
( A F y )  =  G
136, 12nfim 1857 . . . 4  |-  F/ x
( G  e.  _V  ->  ( A F y )  =  G )
14 ov2gf.2 . . . . . 6  |-  F/_ y S
1514nfel1 2587 . . . . 5  |-  F/ y  S  e.  _V
16 nfmpt22 6153 . . . . . . . 8  |-  F/_ y
( x  e.  C ,  y  e.  D  |->  R )
177, 16nfcxfr 2574 . . . . . . 7  |-  F/_ y F
183, 17, 4nfov 6113 . . . . . 6  |-  F/_ y
( A F B )
1918, 14nfeq 2584 . . . . 5  |-  F/ y ( A F B )  =  S
2015, 19nfim 1857 . . . 4  |-  F/ y ( S  e.  _V  ->  ( A F B )  =  S )
21 ov2gf.3 . . . . . 6  |-  ( x  =  A  ->  R  =  G )
2221eleq1d 2507 . . . . 5  |-  ( x  =  A  ->  ( R  e.  _V  <->  G  e.  _V ) )
23 oveq1 6097 . . . . . 6  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
2423, 21eqeq12d 2455 . . . . 5  |-  ( x  =  A  ->  (
( x F y )  =  R  <->  ( A F y )  =  G ) )
2522, 24imbi12d 320 . . . 4  |-  ( x  =  A  ->  (
( R  e.  _V  ->  ( x F y )  =  R )  <-> 
( G  e.  _V  ->  ( A F y )  =  G ) ) )
26 ov2gf.4 . . . . . 6  |-  ( y  =  B  ->  G  =  S )
2726eleq1d 2507 . . . . 5  |-  ( y  =  B  ->  ( G  e.  _V  <->  S  e.  _V ) )
28 oveq2 6098 . . . . . 6  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
2928, 26eqeq12d 2455 . . . . 5  |-  ( y  =  B  ->  (
( A F y )  =  G  <->  ( A F B )  =  S ) )
3027, 29imbi12d 320 . . . 4  |-  ( y  =  B  ->  (
( G  e.  _V  ->  ( A F y )  =  G )  <-> 
( S  e.  _V  ->  ( A F B )  =  S ) ) )
317ovmpt4g 6212 . . . . 5  |-  ( ( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( x F y )  =  R )
32313expia 1184 . . . 4  |-  ( ( x  e.  C  /\  y  e.  D )  ->  ( R  e.  _V  ->  ( x F y )  =  R ) )
332, 3, 4, 13, 20, 25, 30, 32vtocl2gaf 3034 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( S  e.  _V  ->  ( A F B )  =  S ) )
341, 33syl5 32 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( S  e.  H  ->  ( A F B )  =  S ) )
35343impia 1179 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   F/_wnfc 2564   _Vcvv 2970  (class class class)co 6090    e. cmpt2 6092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-iota 5378  df-fun 5417  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator