Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsideofeq Structured version   Visualization version   Unicode version

Theorem outsideofeq 30968
Description: Uniqueness law for OutsideOf. Analogue of segconeq 30848. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsideofeq  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( ( AOutsideOf <. X ,  R >.  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( AOutsideOf <. Y ,  R >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) )  ->  X  =  Y ) )

Proof of Theorem outsideofeq
StepHypRef Expression
1 simp1 1030 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  N  e.  NN )
2 simp21 1063 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
3 simp32 1067 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  X  e.  ( EE `  N
) )
4 simp22 1064 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  R  e.  ( EE `  N
) )
5 broutsideof2 30960 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  X  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  -> 
( AOutsideOf <. X ,  R >.  <-> 
( X  =/=  A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) ) ) )
61, 2, 3, 4, 5syl13anc 1294 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  ( AOutsideOf
<. X ,  R >.  <->  ( X  =/=  A  /\  R  =/=  A  /\  ( X 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) ) ) )
76anbi1d 719 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( AOutsideOf <. X ,  R >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  <-> 
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. ) ) )
8 simp33 1068 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  Y  e.  ( EE `  N
) )
9 broutsideof2 30960 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  Y  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  -> 
( AOutsideOf <. Y ,  R >.  <-> 
( Y  =/=  A  /\  R  =/=  A  /\  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) ) ) )
101, 2, 8, 4, 9syl13anc 1294 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  ( AOutsideOf
<. Y ,  R >.  <->  ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) ) ) )
1110anbi1d 719 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( AOutsideOf <. Y ,  R >.  /\  <. A ,  Y >.Cgr
<. B ,  C >. )  <-> 
( ( Y  =/= 
A  /\  R  =/=  A  /\  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )
127, 11anbi12d 725 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( ( AOutsideOf <. X ,  R >.  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( AOutsideOf <. Y ,  R >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) )  <->  ( ( ( X  =/=  A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) ) )
13 simpll3 1071 . . . . . . 7  |-  ( ( ( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) )  ->  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )
14 simprl3 1077 . . . . . . 7  |-  ( ( ( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) )  ->  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )
1513, 14jca 541 . . . . . 6  |-  ( ( ( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) )  ->  ( ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. )  /\  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) ) )
1615adantl 473 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  (
( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. )  /\  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) ) )
17 simpll2 1070 . . . . . 6  |-  ( ( ( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) )  ->  R  =/=  A )
1817adantl 473 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  R  =/=  A )
19 simp23 1065 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
20 simp31 1066 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
21 simprlr 781 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  X >.Cgr <. B ,  C >. )
22 simprrr 783 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  Y >.Cgr <. B ,  C >. )
231, 2, 3, 2, 8, 19, 20, 21, 22cgrtr3and 30833 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
2416, 18, 23jca32 544 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  (
( ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. )  /\  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr
<. A ,  Y >. ) ) )
25 simprll 780 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  X  Btwn  <. A ,  R >. )
26 simprlr 781 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  Y  Btwn  <. A ,  R >. )
27 simprrr 783 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
28 midofsegid 30942 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( X  e.  ( EE `  N )  /\  Y  e.  ( EE `  N ) ) )  ->  ( ( X 
Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >.  /\  <. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) )
291, 2, 4, 3, 8, 28syl122anc 1301 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >.  /\ 
<. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) )
3029adantr 472 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  -> 
( ( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >.  /\  <. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) )
3125, 26, 27, 30mp3and 1393 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  X  =  Y )
3231exp32 616 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >. )  ->  ( ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) ) )
33 simprlr 781 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  Y  Btwn  <. A ,  R >. )
34 simprll 780 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  R  Btwn  <. A ,  X >. )
351, 2, 8, 4, 3, 33, 34btwnexchand 30864 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  Y  Btwn  <. A ,  X >. )
36 simprrr 783 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
371, 2, 3, 8, 35, 36endofsegidand 30924 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  X  =  Y )
3837exp32 616 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( R  Btwn  <. A ,  X >.  /\  Y  Btwn  <. A ,  R >. )  ->  ( ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) ) )
39 simprll 780 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  X  Btwn  <. A ,  R >. )
40 simprlr 781 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  R  Btwn  <. A ,  Y >. )
411, 2, 3, 4, 8, 39, 40btwnexchand 30864 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  X  Btwn  <. A ,  Y >. )
42 simprrr 783 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
431, 2, 3, 2, 8, 42cgrcomand 30829 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  <. A ,  Y >.Cgr <. A ,  X >. )
441, 2, 8, 3, 41, 43endofsegidand 30924 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  Y  =  X )
4544eqcomd 2477 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  X  =  Y )
4645exp32 616 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  ->  ( ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) ) )
47 simprr 774 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  X  Btwn  <. A ,  Y >. ) )  ->  X  Btwn  <. A ,  Y >. )
48 simplrr 779 . . . . . . . . . . . . 13  |-  ( ( ( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  X  Btwn  <. A ,  Y >. )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
4948adantl 473 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  X  Btwn  <. A ,  Y >. ) )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
501, 2, 3, 2, 8, 49cgrcomand 30829 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  X  Btwn  <. A ,  Y >. ) )  ->  <. A ,  Y >.Cgr <. A ,  X >. )
511, 2, 8, 3, 47, 50endofsegidand 30924 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  X  Btwn  <. A ,  Y >. ) )  ->  Y  =  X )
5251eqcomd 2477 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  X  Btwn  <. A ,  Y >. ) )  ->  X  =  Y )
5352expr 626 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  -> 
( X  Btwn  <. A ,  Y >.  ->  X  =  Y ) )
54 simprr 774 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  Y  Btwn  <. A ,  X >. ) )  ->  Y  Btwn  <. A ,  X >. )
55 simplrr 779 . . . . . . . . . . 11  |-  ( ( ( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  Y  Btwn  <. A ,  X >. )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
5655adantl 473 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  Y  Btwn  <. A ,  X >. ) )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
571, 2, 3, 8, 54, 56endofsegidand 30924 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  Y  Btwn  <. A ,  X >. ) )  ->  X  =  Y )
5857expr 626 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  -> 
( Y  Btwn  <. A ,  X >.  ->  X  =  Y ) )
59 simprrl 782 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  R  =/=  A )
6059necomd 2698 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  A  =/=  R )
61 simprll 780 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  R  Btwn  <. A ,  X >. )
62 simprlr 781 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  R  Btwn  <. A ,  Y >. )
63 btwnconn1 30939 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( X  e.  ( EE `  N )  /\  Y  e.  ( EE `  N ) ) )  ->  ( ( A  =/=  R  /\  R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  ->  ( X  Btwn  <. A ,  Y >.  \/  Y  Btwn  <. A ,  X >. ) ) )
641, 2, 4, 3, 8, 63syl122anc 1301 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( A  =/=  R  /\  R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  ->  ( X  Btwn  <. A ,  Y >.  \/  Y  Btwn  <. A ,  X >. ) ) )
6564adantr 472 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  -> 
( ( A  =/= 
R  /\  R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  ->  ( X  Btwn  <. A ,  Y >.  \/  Y  Btwn  <. A ,  X >. ) ) )
6660, 61, 62, 65mp3and 1393 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  -> 
( X  Btwn  <. A ,  Y >.  \/  Y  Btwn  <. A ,  X >. ) )
6753, 58, 66mpjaod 388 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  X  =  Y )
6867exp32 616 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  ->  ( ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) ) )
6932, 38, 46, 68ccased 962 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. )  /\  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  -> 
( ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) ) )
7069imp32 440 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. )  /\  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr
<. A ,  Y >. ) ) )  ->  X  =  Y )
7124, 70syldan 478 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  X  =  Y )
7271ex 441 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( ( ( X  =/=  A  /\  R  =/=  A  /\  ( X 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) )  ->  X  =  Y ) )
7312, 72sylbid 223 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( ( AOutsideOf <. X ,  R >.  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( AOutsideOf <. Y ,  R >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) )  ->  X  =  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   <.cop 3965   class class class wbr 4395   ` cfv 5589   NNcn 10631   EEcee 24997    Btwn cbtwn 24998  Cgrccgr 24999  OutsideOfcoutsideof 30957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830  df-ee 25000  df-btwn 25001  df-cgr 25002  df-ofs 30821  df-colinear 30877  df-ifs 30878  df-cgr3 30879  df-fs 30880  df-outsideof 30958
This theorem is referenced by:  outsideofeu  30969  outsidele  30970
  Copyright terms: Public domain W3C validator