Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsidele Structured version   Unicode version

Theorem outsidele 28163
Description: Relate OutsideOf to  Seg<_. Theorem 6.13 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsidele  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <-> 
A  Btwn  <. P ,  B >. ) ) )

Proof of Theorem outsidele
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  N  e.  NN )
2 simpr1 994 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  P  e.  ( EE `  N ) )
3 simpr2 995 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
4 simpr3 996 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
5 brsegle2 28140 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <->  E. y  e.  ( EE `  N ) ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )
61, 2, 3, 2, 4, 5syl122anc 1227 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( <. P ,  A >. 
Seg<_ 
<. P ,  B >.  <->  E. y  e.  ( EE `  N ) ( A 
Btwn  <. P ,  y
>.  /\  <. P ,  y
>.Cgr <. P ,  B >. ) ) )
76adantr 465 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <->  E. y  e.  ( EE `  N ) ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )
8 simprl 755 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  POutsideOf
<. A ,  B >. )
9 outsideofcom 28159 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
POutsideOf <. B ,  A >. ) )
109ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
POutsideOf <. B ,  A >. ) )
118, 10mpbid 210 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  POutsideOf
<. B ,  A >. )
12 simpll 753 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  N  e.  NN )
13 simplr1 1030 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  P  e.  ( EE `  N
) )
14 simplr3 1032 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
1512, 13, 14cgrrflxd 28019 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  <. P ,  B >.Cgr <. P ,  B >. )
1615adantr 465 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  <. P ,  B >.Cgr <. P ,  B >. )
1711, 16jca 532 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. B ,  A >.  /\  <. P ,  B >.Cgr
<. P ,  B >. ) )
18 simprrl 763 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  A  Btwn  <. P ,  y
>. )
19 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  y  e.  ( EE `  N
) )
20 simplr2 1031 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
21 btwncolinear1 28100 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P , 
y >.  ->  P  Colinear  <. y ,  A >. ) )
2212, 13, 19, 20, 21syl13anc 1220 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  ( A  Btwn  <. P ,  y
>.  ->  P  Colinear  <. y ,  A >. ) )
2322adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( A  Btwn  <. P , 
y >.  ->  P  Colinear  <. y ,  A >. ) )
2418, 23mpd 15 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  P  Colinear  <. y ,  A >. )
25 outsidene1 28154 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  ->  A  =/=  P
) )
2625ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. A ,  B >.  ->  A  =/=  P
) )
278, 26mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  A  =/=  P )
2827neneqd 2624 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  -.  A  =  P
)
29 df-3an 967 . . . . . . . . . . . . 13  |-  ( ( POutsideOf <. A ,  B >.  /\  ( A  Btwn  <. P ,  y >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. )  /\  P  Btwn  <. y ,  A >. )  <->  ( ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) )  /\  P  Btwn  <. y ,  A >. ) )
30 simpr2l 1047 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  Btwn  <. P ,  y >. )
3112, 20, 13, 19, 30btwncomand 28046 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  Btwn  <.
y ,  P >. )
32 simpr3 996 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  P  Btwn  <.
y ,  A >. )
33 btwnswapid2 28049 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <.
y ,  P >.  /\  P  Btwn  <. y ,  A >. )  ->  A  =  P ) )
3412, 20, 19, 13, 33syl13anc 1220 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  (
( A  Btwn  <. y ,  P >.  /\  P  Btwn  <.
y ,  A >. )  ->  A  =  P ) )
3534adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  ( ( A  Btwn  <. y ,  P >.  /\  P  Btwn  <. y ,  A >. )  ->  A  =  P ) )
3631, 32, 35mp2and 679 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  =  P )
3729, 36sylan2br 476 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( POutsideOf <. A ,  B >.  /\  ( A  Btwn  <. P ,  y >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. ) )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  =  P )
3837expr 615 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( P  Btwn  <. y ,  A >.  ->  A  =  P ) )
3928, 38mtod 177 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  -.  P  Btwn  <. y ,  A >. )
40 broutsideof 28152 . . . . . . . . . 10  |-  ( POutsideOf <. y ,  A >.  <->  ( P  Colinear  <. y ,  A >.  /\  -.  P  Btwn  <.
y ,  A >. ) )
4124, 39, 40sylanbrc 664 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  POutsideOf
<. y ,  A >. )
42 simprrr 764 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  <. P ,  y >.Cgr <. P ,  B >. )
4341, 42jca 532 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. y ,  A >.  /\  <. P ,  y
>.Cgr <. P ,  B >. ) )
44 outsideofeq 28161 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  y  e.  ( EE `  N ) ) )  ->  (
( ( POutsideOf <. B ,  A >.  /\  <. P ,  B >.Cgr <. P ,  B >. )  /\  ( POutsideOf <. y ,  A >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. ) )  ->  B  =  y ) )
4512, 13, 20, 13, 14, 14, 19, 44syl133anc 1241 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  (
( ( POutsideOf <. B ,  A >.  /\  <. P ,  B >.Cgr <. P ,  B >. )  /\  ( POutsideOf <. y ,  A >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. ) )  ->  B  =  y ) )
4645adantr 465 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( ( ( POutsideOf <. B ,  A >.  /\ 
<. P ,  B >.Cgr <. P ,  B >. )  /\  ( POutsideOf <. y ,  A >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) )  ->  B  =  y ) )
4717, 43, 46mp2and 679 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  B  =  y )
48 opeq2 4060 . . . . . . . . 9  |-  ( B  =  y  ->  <. P ,  B >.  =  <. P , 
y >. )
4948breq2d 4304 . . . . . . . 8  |-  ( B  =  y  ->  ( A  Btwn  <. P ,  B >.  <-> 
A  Btwn  <. P , 
y >. ) )
5018, 49syl5ibrcom 222 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( B  =  y  ->  A  Btwn  <. P ,  B >. ) )
5147, 50mpd 15 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  A  Btwn  <. P ,  B >. )
5251an4s 822 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  /\  ( y  e.  ( EE `  N
)  /\  ( A  Btwn  <. P ,  y
>.  /\  <. P ,  y
>.Cgr <. P ,  B >. ) ) )  ->  A  Btwn  <. P ,  B >. )
5352rexlimdvaa 2842 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( E. y  e.  ( EE `  N
) ( A  Btwn  <. P ,  y >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. )  ->  A  Btwn  <. P ,  B >. ) )
547, 53sylbid 215 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  ->  A  Btwn  <. P ,  B >. ) )
55 btwnsegle 28148 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P ,  B >.  ->  <. P ,  A >.  Seg<_  <. P ,  B >. ) )
5655adantr 465 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( A  Btwn  <. P ,  B >.  ->  <. P ,  A >.  Seg<_  <. P ,  B >. ) )
5754, 56impbid 191 . 2  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <-> 
A  Btwn  <. P ,  B >. ) )
5857ex 434 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <-> 
A  Btwn  <. P ,  B >. ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   E.wrex 2716   <.cop 3883   class class class wbr 4292   ` cfv 5418   NNcn 10322   EEcee 23134    Btwn cbtwn 23135  Cgrccgr 23136    Colinear ccolin 28068    Seg<_ csegle 28137  OutsideOfcoutsideof 28150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-map 7216  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-oi 7724  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-n0 10580  df-z 10647  df-uz 10862  df-rp 10992  df-ico 11306  df-icc 11307  df-fz 11438  df-fzo 11549  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-clim 12966  df-sum 13164  df-ee 23137  df-btwn 23138  df-cgr 23139  df-ofs 28014  df-colinear 28070  df-ifs 28071  df-cgr3 28072  df-fs 28073  df-segle 28138  df-outsideof 28151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator