Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsidele Structured version   Unicode version

Theorem outsidele 29935
Description: Relate OutsideOf to  Seg<_. Theorem 6.13 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsidele  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <-> 
A  Btwn  <. P ,  B >. ) ) )

Proof of Theorem outsidele
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpl 455 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  N  e.  NN )
2 simpr1 1000 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  P  e.  ( EE `  N ) )
3 simpr2 1001 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
4 simpr3 1002 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
5 brsegle2 29912 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <->  E. y  e.  ( EE `  N ) ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )
61, 2, 3, 2, 4, 5syl122anc 1235 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( <. P ,  A >. 
Seg<_ 
<. P ,  B >.  <->  E. y  e.  ( EE `  N ) ( A 
Btwn  <. P ,  y
>.  /\  <. P ,  y
>.Cgr <. P ,  B >. ) ) )
76adantr 463 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <->  E. y  e.  ( EE `  N ) ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )
8 simprl 754 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  POutsideOf
<. A ,  B >. )
9 outsideofcom 29931 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
POutsideOf <. B ,  A >. ) )
109ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
POutsideOf <. B ,  A >. ) )
118, 10mpbid 210 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  POutsideOf
<. B ,  A >. )
12 simpll 751 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  N  e.  NN )
13 simplr1 1036 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  P  e.  ( EE `  N
) )
14 simplr3 1038 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
1512, 13, 14cgrrflxd 29791 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  <. P ,  B >.Cgr <. P ,  B >. )
1615adantr 463 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  <. P ,  B >.Cgr <. P ,  B >. )
1711, 16jca 530 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. B ,  A >.  /\  <. P ,  B >.Cgr
<. P ,  B >. ) )
18 simprrl 763 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  A  Btwn  <. P ,  y
>. )
19 simpr 459 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  y  e.  ( EE `  N
) )
20 simplr2 1037 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
21 btwncolinear1 29872 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P , 
y >.  ->  P  Colinear  <. y ,  A >. ) )
2212, 13, 19, 20, 21syl13anc 1228 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  ( A  Btwn  <. P ,  y
>.  ->  P  Colinear  <. y ,  A >. ) )
2322adantr 463 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( A  Btwn  <. P , 
y >.  ->  P  Colinear  <. y ,  A >. ) )
2418, 23mpd 15 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  P  Colinear  <. y ,  A >. )
25 outsidene1 29926 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  ->  A  =/=  P
) )
2625ad2antrr 723 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. A ,  B >.  ->  A  =/=  P
) )
278, 26mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  A  =/=  P )
2827neneqd 2584 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  -.  A  =  P
)
29 df-3an 973 . . . . . . . . . . . . 13  |-  ( ( POutsideOf <. A ,  B >.  /\  ( A  Btwn  <. P ,  y >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. )  /\  P  Btwn  <. y ,  A >. )  <->  ( ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) )  /\  P  Btwn  <. y ,  A >. ) )
30 simpr2l 1053 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  Btwn  <. P ,  y >. )
3112, 20, 13, 19, 30btwncomand 29818 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  Btwn  <.
y ,  P >. )
32 simpr3 1002 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  P  Btwn  <.
y ,  A >. )
33 btwnswapid2 29821 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <.
y ,  P >.  /\  P  Btwn  <. y ,  A >. )  ->  A  =  P ) )
3412, 20, 19, 13, 33syl13anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  (
( A  Btwn  <. y ,  P >.  /\  P  Btwn  <.
y ,  A >. )  ->  A  =  P ) )
3534adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  ( ( A  Btwn  <. y ,  P >.  /\  P  Btwn  <. y ,  A >. )  ->  A  =  P ) )
3631, 32, 35mp2and 677 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  =  P )
3729, 36sylan2br 474 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( POutsideOf <. A ,  B >.  /\  ( A  Btwn  <. P ,  y >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. ) )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  =  P )
3837expr 613 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( P  Btwn  <. y ,  A >.  ->  A  =  P ) )
3928, 38mtod 177 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  -.  P  Btwn  <. y ,  A >. )
40 broutsideof 29924 . . . . . . . . . 10  |-  ( POutsideOf <. y ,  A >.  <->  ( P  Colinear  <. y ,  A >.  /\  -.  P  Btwn  <.
y ,  A >. ) )
4124, 39, 40sylanbrc 662 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  POutsideOf
<. y ,  A >. )
42 simprrr 764 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  <. P ,  y >.Cgr <. P ,  B >. )
4341, 42jca 530 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. y ,  A >.  /\  <. P ,  y
>.Cgr <. P ,  B >. ) )
44 outsideofeq 29933 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  y  e.  ( EE `  N ) ) )  ->  (
( ( POutsideOf <. B ,  A >.  /\  <. P ,  B >.Cgr <. P ,  B >. )  /\  ( POutsideOf <. y ,  A >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. ) )  ->  B  =  y ) )
4512, 13, 20, 13, 14, 14, 19, 44syl133anc 1249 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  (
( ( POutsideOf <. B ,  A >.  /\  <. P ,  B >.Cgr <. P ,  B >. )  /\  ( POutsideOf <. y ,  A >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. ) )  ->  B  =  y ) )
4645adantr 463 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( ( ( POutsideOf <. B ,  A >.  /\ 
<. P ,  B >.Cgr <. P ,  B >. )  /\  ( POutsideOf <. y ,  A >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) )  ->  B  =  y ) )
4717, 43, 46mp2and 677 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  B  =  y )
48 opeq2 4132 . . . . . . . . 9  |-  ( B  =  y  ->  <. P ,  B >.  =  <. P , 
y >. )
4948breq2d 4379 . . . . . . . 8  |-  ( B  =  y  ->  ( A  Btwn  <. P ,  B >.  <-> 
A  Btwn  <. P , 
y >. ) )
5018, 49syl5ibrcom 222 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( B  =  y  ->  A  Btwn  <. P ,  B >. ) )
5147, 50mpd 15 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  A  Btwn  <. P ,  B >. )
5251an4s 824 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  /\  ( y  e.  ( EE `  N
)  /\  ( A  Btwn  <. P ,  y
>.  /\  <. P ,  y
>.Cgr <. P ,  B >. ) ) )  ->  A  Btwn  <. P ,  B >. )
5352rexlimdvaa 2875 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( E. y  e.  ( EE `  N
) ( A  Btwn  <. P ,  y >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. )  ->  A  Btwn  <. P ,  B >. ) )
547, 53sylbid 215 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  ->  A  Btwn  <. P ,  B >. ) )
55 btwnsegle 29920 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P ,  B >.  ->  <. P ,  A >.  Seg<_  <. P ,  B >. ) )
5655adantr 463 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( A  Btwn  <. P ,  B >.  ->  <. P ,  A >.  Seg<_  <. P ,  B >. ) )
5754, 56impbid 191 . 2  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <-> 
A  Btwn  <. P ,  B >. ) )
5857ex 432 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <-> 
A  Btwn  <. P ,  B >. ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826    =/= wne 2577   E.wrex 2733   <.cop 3950   class class class wbr 4367   ` cfv 5496   NNcn 10452   EEcee 24312    Btwn cbtwn 24313  Cgrccgr 24314    Colinear ccolin 29840    Seg<_ csegle 29909  OutsideOfcoutsideof 29922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-recs 6960  df-rdg 6994  df-1o 7048  df-oadd 7052  df-er 7229  df-map 7340  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-sup 7816  df-oi 7850  df-card 8233  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-n0 10713  df-z 10782  df-uz 11002  df-rp 11140  df-ico 11456  df-icc 11457  df-fz 11594  df-fzo 11718  df-seq 12011  df-exp 12070  df-hash 12308  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-clim 13313  df-sum 13511  df-ee 24315  df-btwn 24316  df-cgr 24317  df-ofs 29786  df-colinear 29842  df-ifs 29843  df-cgr3 29844  df-fs 29845  df-segle 29910  df-outsideof 29923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator