MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq1 Structured version   Unicode version

Theorem oteq1 4228
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq1  |-  ( A  =  B  ->  <. A ,  C ,  D >.  = 
<. B ,  C ,  D >. )

Proof of Theorem oteq1
StepHypRef Expression
1 opeq1 4219 . . 3  |-  ( A  =  B  ->  <. A ,  C >.  =  <. B ,  C >. )
21opeq1d 4225 . 2  |-  ( A  =  B  ->  <. <. A ,  C >. ,  D >.  = 
<. <. B ,  C >. ,  D >. )
3 df-ot 4042 . 2  |-  <. A ,  C ,  D >.  = 
<. <. A ,  C >. ,  D >.
4 df-ot 4042 . 2  |-  <. B ,  C ,  D >.  = 
<. <. B ,  C >. ,  D >.
52, 3, 43eqtr4g 2533 1  |-  ( A  =  B  ->  <. A ,  C ,  D >.  = 
<. B ,  C ,  D >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379   <.cop 4039   <.cotp 4041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-ot 4042
This theorem is referenced by:  oteq1d  4231  otiunsndisj  4759  efgi  16610  efgtf  16613  efgtval  16614  msrfval  28722  otiunsndisjX  32091  mapdh9a  36988  mapdh9aOLDN  36989  hdmapval2  37033
  Copyright terms: Public domain W3C validator