Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem9N Structured version   Visualization version   Unicode version

Theorem osumcllem9N 33574
Description: Lemma for osumclN 33577. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l  |-  .<_  =  ( le `  K )
osumcllem.j  |-  .\/  =  ( join `  K )
osumcllem.a  |-  A  =  ( Atoms `  K )
osumcllem.p  |-  .+  =  ( +P `  K
)
osumcllem.o  |-  ._|_  =  ( _|_P `  K
)
osumcllem.c  |-  C  =  ( PSubCl `  K )
osumcllem.m  |-  M  =  ( X  .+  {
p } )
osumcllem.u  |-  U  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )
Assertion
Ref Expression
osumcllem9N  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  M  =  X )

Proof of Theorem osumcllem9N
StepHypRef Expression
1 inass 3654 . . . . . . 7  |-  ( ( (  ._|_  `  X )  i^i  U )  i^i 
M )  =  ( (  ._|_  `  X )  i^i  ( U  i^i  M ) )
2 simp11 1044 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  K  e.  HL )
3 simp13 1046 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  Y  e.  C )
4 simp21 1047 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  X  C_  (  ._|_  `  Y
) )
5 osumcllem.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
6 osumcllem.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
7 osumcllem.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
8 osumcllem.p . . . . . . . . . 10  |-  .+  =  ( +P `  K
)
9 osumcllem.o . . . . . . . . . 10  |-  ._|_  =  ( _|_P `  K
)
10 osumcllem.c . . . . . . . . . 10  |-  C  =  ( PSubCl `  K )
11 osumcllem.m . . . . . . . . . 10  |-  M  =  ( X  .+  {
p } )
12 osumcllem.u . . . . . . . . . 10  |-  U  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )
135, 6, 7, 8, 9, 10, 11, 12osumcllem3N 33568 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  (
(  ._|_  `  X )  i^i  U )  =  Y )
142, 3, 4, 13syl3anc 1276 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( (  ._|_  `  X
)  i^i  U )  =  Y )
1514ineq1d 3645 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( ( (  ._|_  `  X )  i^i  U
)  i^i  M )  =  ( Y  i^i  M ) )
161, 15syl5eqr 2510 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( (  ._|_  `  X
)  i^i  ( U  i^i  M ) )  =  ( Y  i^i  M
) )
17 simp12 1045 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  X  e.  C )
187, 10psubclssatN 33551 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  C )  ->  X  C_  A )
192, 17, 18syl2anc 671 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  X  C_  A )
207, 10psubclssatN 33551 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  C )  ->  Y  C_  A )
212, 3, 20syl2anc 671 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  Y  C_  A )
22 simp22 1048 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  X  =/=  (/) )
237, 8paddssat 33424 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
242, 19, 21, 23syl3anc 1276 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( X  .+  Y
)  C_  A )
257, 9polssatN 33518 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  A )  -> 
(  ._|_  `  ( X  .+  Y ) )  C_  A )
262, 24, 25syl2anc 671 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
(  ._|_  `  ( X  .+  Y ) )  C_  A )
277, 9polssatN 33518 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  (  ._|_  `  ( X  .+  Y ) )  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  C_  A )
282, 26, 27syl2anc 671 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
(  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  C_  A )
2912, 28syl5eqss 3488 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  U  C_  A )
30 simp23 1049 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  p  e.  U )
3129, 30sseldd 3445 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  p  e.  A )
32 simp3 1016 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  -.  p  e.  ( X  .+  Y ) )
335, 6, 7, 8, 9, 10, 11, 12osumcllem8N 33573 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( Y  i^i  M
)  =  (/) )
342, 19, 21, 4, 22, 31, 32, 33syl331anc 1301 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( Y  i^i  M
)  =  (/) )
3516, 34eqtrd 2496 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( (  ._|_  `  X
)  i^i  ( U  i^i  M ) )  =  (/) )
3635fveq2d 5892 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
(  ._|_  `  ( (  ._|_  `  X )  i^i  ( U  i^i  M
) ) )  =  (  ._|_  `  (/) ) )
377, 9pol0N 33519 . . . . 5  |-  ( K  e.  HL  ->  (  ._|_  `  (/) )  =  A )
382, 37syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
(  ._|_  `  (/) )  =  A )
3936, 38eqtrd 2496 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
(  ._|_  `  ( (  ._|_  `  X )  i^i  ( U  i^i  M
) ) )  =  A )
405, 6, 7, 8, 9, 10, 11, 12osumcllem1N 33566 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  ( U  i^i  M
)  =  M )
412, 19, 21, 30, 40syl31anc 1279 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( U  i^i  M
)  =  M )
4239, 41ineq12d 3647 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( (  ._|_  `  (
(  ._|_  `  X )  i^i  ( U  i^i  M
) ) )  i^i  ( U  i^i  M
) )  =  ( A  i^i  M ) )
437, 9, 10polsubclN 33562 . . . . . 6  |-  ( ( K  e.  HL  /\  (  ._|_  `  ( X  .+  Y ) )  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  e.  C )
442, 26, 43syl2anc 671 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
(  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  e.  C )
4512, 44syl5eqel 2544 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  U  e.  C )
467, 8, 10paddatclN 33559 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  C  /\  p  e.  A )  ->  ( X  .+  {
p } )  e.  C )
472, 17, 31, 46syl3anc 1276 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( X  .+  {
p } )  e.  C )
4811, 47syl5eqel 2544 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  M  e.  C )
4910psubclinN 33558 . . . 4  |-  ( ( K  e.  HL  /\  U  e.  C  /\  M  e.  C )  ->  ( U  i^i  M
)  e.  C )
502, 45, 48, 49syl3anc 1276 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( U  i^i  M
)  e.  C )
515, 6, 7, 8, 9, 10, 11, 12osumcllem2N 33567 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  X  C_  ( U  i^i  M ) )
522, 19, 21, 30, 51syl31anc 1279 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  X  C_  ( U  i^i  M ) )
5310, 9poml6N 33565 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  ( U  i^i  M )  e.  C )  /\  X  C_  ( U  i^i  M ) )  ->  (
(  ._|_  `  ( (  ._|_  `  X )  i^i  ( U  i^i  M
) ) )  i^i  ( U  i^i  M
) )  =  X )
542, 17, 50, 52, 53syl31anc 1279 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( (  ._|_  `  (
(  ._|_  `  X )  i^i  ( U  i^i  M
) ) )  i^i  ( U  i^i  M
) )  =  X )
5531snssd 4130 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  { p }  C_  A )
567, 8paddssat 33424 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  {
p }  C_  A
)  ->  ( X  .+  { p } ) 
C_  A )
572, 19, 55, 56syl3anc 1276 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( X  .+  {
p } )  C_  A )
5811, 57syl5eqss 3488 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  M  C_  A )
59 sseqin2 3663 . . 3  |-  ( M 
C_  A  <->  ( A  i^i  M )  =  M )
6058, 59sylib 201 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( A  i^i  M
)  =  M )
6142, 54, 603eqtr3rd 2505 1  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  M  =  X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 991    = wceq 1455    e. wcel 1898    =/= wne 2633    i^i cin 3415    C_ wss 3416   (/)c0 3743   {csn 3980   ` cfv 5601  (class class class)co 6315   lecple 15246   joincjn 16238   Atomscatm 32874   HLchlt 32961   +Pcpadd 33405   _|_PcpolN 33512   PSubClcpscN 33544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-riotaBAD 32570
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-iin 4295  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-1st 6820  df-2nd 6821  df-undef 7046  df-preset 16222  df-poset 16240  df-plt 16253  df-lub 16269  df-glb 16270  df-join 16271  df-meet 16272  df-p0 16334  df-p1 16335  df-lat 16341  df-clat 16403  df-oposet 32787  df-ol 32789  df-oml 32790  df-covers 32877  df-ats 32878  df-atl 32909  df-cvlat 32933  df-hlat 32962  df-psubsp 33113  df-pmap 33114  df-padd 33406  df-polarityN 33513  df-psubclN 33545
This theorem is referenced by:  osumcllem11N  33576
  Copyright terms: Public domain W3C validator