Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem9N Structured version   Unicode version

Theorem osumcllem9N 33914
Description: Lemma for osumclN 33917. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l  |-  .<_  =  ( le `  K )
osumcllem.j  |-  .\/  =  ( join `  K )
osumcllem.a  |-  A  =  ( Atoms `  K )
osumcllem.p  |-  .+  =  ( +P `  K
)
osumcllem.o  |-  ._|_  =  ( _|_P `  K
)
osumcllem.c  |-  C  =  ( PSubCl `  K )
osumcllem.m  |-  M  =  ( X  .+  {
p } )
osumcllem.u  |-  U  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )
Assertion
Ref Expression
osumcllem9N  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  M  =  X )

Proof of Theorem osumcllem9N
StepHypRef Expression
1 inass 3658 . . . . . . 7  |-  ( ( (  ._|_  `  X )  i^i  U )  i^i 
M )  =  ( (  ._|_  `  X )  i^i  ( U  i^i  M ) )
2 simp11 1018 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  K  e.  HL )
3 simp13 1020 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  Y  e.  C )
4 simp21 1021 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  X  C_  (  ._|_  `  Y
) )
5 osumcllem.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
6 osumcllem.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
7 osumcllem.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
8 osumcllem.p . . . . . . . . . 10  |-  .+  =  ( +P `  K
)
9 osumcllem.o . . . . . . . . . 10  |-  ._|_  =  ( _|_P `  K
)
10 osumcllem.c . . . . . . . . . 10  |-  C  =  ( PSubCl `  K )
11 osumcllem.m . . . . . . . . . 10  |-  M  =  ( X  .+  {
p } )
12 osumcllem.u . . . . . . . . . 10  |-  U  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )
135, 6, 7, 8, 9, 10, 11, 12osumcllem3N 33908 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  Y  e.  C  /\  X  C_  (  ._|_  `  Y
) )  ->  (
(  ._|_  `  X )  i^i  U )  =  Y )
142, 3, 4, 13syl3anc 1219 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( (  ._|_  `  X
)  i^i  U )  =  Y )
1514ineq1d 3649 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( ( (  ._|_  `  X )  i^i  U
)  i^i  M )  =  ( Y  i^i  M ) )
161, 15syl5eqr 2506 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( (  ._|_  `  X
)  i^i  ( U  i^i  M ) )  =  ( Y  i^i  M
) )
17 simp12 1019 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  X  e.  C )
187, 10psubclssatN 33891 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  C )  ->  X  C_  A )
192, 17, 18syl2anc 661 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  X  C_  A )
207, 10psubclssatN 33891 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  C )  ->  Y  C_  A )
212, 3, 20syl2anc 661 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  Y  C_  A )
22 simp22 1022 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  X  =/=  (/) )
237, 8paddssat 33764 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
242, 19, 21, 23syl3anc 1219 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( X  .+  Y
)  C_  A )
257, 9polssatN 33858 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  A )  -> 
(  ._|_  `  ( X  .+  Y ) )  C_  A )
262, 24, 25syl2anc 661 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
(  ._|_  `  ( X  .+  Y ) )  C_  A )
277, 9polssatN 33858 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  (  ._|_  `  ( X  .+  Y ) )  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  C_  A )
282, 26, 27syl2anc 661 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
(  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  C_  A )
2912, 28syl5eqss 3498 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  U  C_  A )
30 simp23 1023 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  p  e.  U )
3129, 30sseldd 3455 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  p  e.  A )
32 simp3 990 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  -.  p  e.  ( X  .+  Y ) )
335, 6, 7, 8, 9, 10, 11, 12osumcllem8N 33913 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( Y  i^i  M
)  =  (/) )
342, 19, 21, 4, 22, 31, 32, 33syl331anc 1244 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( Y  i^i  M
)  =  (/) )
3516, 34eqtrd 2492 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( (  ._|_  `  X
)  i^i  ( U  i^i  M ) )  =  (/) )
3635fveq2d 5793 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
(  ._|_  `  ( (  ._|_  `  X )  i^i  ( U  i^i  M
) ) )  =  (  ._|_  `  (/) ) )
377, 9pol0N 33859 . . . . 5  |-  ( K  e.  HL  ->  (  ._|_  `  (/) )  =  A )
382, 37syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
(  ._|_  `  (/) )  =  A )
3936, 38eqtrd 2492 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
(  ._|_  `  ( (  ._|_  `  X )  i^i  ( U  i^i  M
) ) )  =  A )
405, 6, 7, 8, 9, 10, 11, 12osumcllem1N 33906 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  ( U  i^i  M
)  =  M )
412, 19, 21, 30, 40syl31anc 1222 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( U  i^i  M
)  =  M )
4239, 41ineq12d 3651 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( (  ._|_  `  (
(  ._|_  `  X )  i^i  ( U  i^i  M
) ) )  i^i  ( U  i^i  M
) )  =  ( A  i^i  M ) )
437, 9, 10polsubclN 33902 . . . . . 6  |-  ( ( K  e.  HL  /\  (  ._|_  `  ( X  .+  Y ) )  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  e.  C )
442, 26, 43syl2anc 661 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
(  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  e.  C )
4512, 44syl5eqel 2543 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  U  e.  C )
467, 8, 10paddatclN 33899 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  C  /\  p  e.  A )  ->  ( X  .+  {
p } )  e.  C )
472, 17, 31, 46syl3anc 1219 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( X  .+  {
p } )  e.  C )
4811, 47syl5eqel 2543 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  M  e.  C )
4910psubclinN 33898 . . . 4  |-  ( ( K  e.  HL  /\  U  e.  C  /\  M  e.  C )  ->  ( U  i^i  M
)  e.  C )
502, 45, 48, 49syl3anc 1219 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( U  i^i  M
)  e.  C )
515, 6, 7, 8, 9, 10, 11, 12osumcllem2N 33907 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  U )  ->  X  C_  ( U  i^i  M ) )
522, 19, 21, 30, 51syl31anc 1222 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  X  C_  ( U  i^i  M ) )
5310, 9poml6N 33905 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  ( U  i^i  M )  e.  C )  /\  X  C_  ( U  i^i  M ) )  ->  (
(  ._|_  `  ( (  ._|_  `  X )  i^i  ( U  i^i  M
) ) )  i^i  ( U  i^i  M
) )  =  X )
542, 17, 50, 52, 53syl31anc 1222 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( (  ._|_  `  (
(  ._|_  `  X )  i^i  ( U  i^i  M
) ) )  i^i  ( U  i^i  M
) )  =  X )
5531snssd 4116 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  { p }  C_  A )
567, 8paddssat 33764 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  {
p }  C_  A
)  ->  ( X  .+  { p } ) 
C_  A )
572, 19, 55, 56syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( X  .+  {
p } )  C_  A )
5811, 57syl5eqss 3498 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  M  C_  A )
59 sseqin2 3667 . . 3  |-  ( M 
C_  A  <->  ( A  i^i  M )  =  M )
6058, 59sylib 196 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  -> 
( A  i^i  M
)  =  M )
6142, 54, 603eqtr3rd 2501 1  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  U )  /\  -.  p  e.  ( X  .+  Y ) )  ->  M  =  X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644    i^i cin 3425    C_ wss 3426   (/)c0 3735   {csn 3975   ` cfv 5516  (class class class)co 6190   lecple 14347   joincjn 15216   Atomscatm 33214   HLchlt 33301   +Pcpadd 33745   _|_PcpolN 33852   PSubClcpscN 33884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-riotaBAD 32910
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-iun 4271  df-iin 4272  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-1st 6677  df-2nd 6678  df-undef 6892  df-poset 15218  df-plt 15230  df-lub 15246  df-glb 15247  df-join 15248  df-meet 15249  df-p0 15311  df-p1 15312  df-lat 15318  df-clat 15380  df-oposet 33127  df-ol 33129  df-oml 33130  df-covers 33217  df-ats 33218  df-atl 33249  df-cvlat 33273  df-hlat 33302  df-psubsp 33453  df-pmap 33454  df-padd 33746  df-polarityN 33853  df-psubclN 33885
This theorem is referenced by:  osumcllem11N  33916
  Copyright terms: Public domain W3C validator