Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem4N Structured version   Unicode version

Theorem osumcllem4N 33496
Description: Lemma for osumclN 33504. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l  |-  .<_  =  ( le `  K )
osumcllem.j  |-  .\/  =  ( join `  K )
osumcllem.a  |-  A  =  ( Atoms `  K )
osumcllem.p  |-  .+  =  ( +P `  K
)
osumcllem.o  |-  ._|_  =  ( _|_P `  K
)
osumcllem.c  |-  C  =  ( PSubCl `  K )
osumcllem.m  |-  M  =  ( X  .+  {
p } )
osumcllem.u  |-  U  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )
Assertion
Ref Expression
osumcllem4N  |-  ( ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y
) )  /\  (
r  e.  X  /\  q  e.  Y )
)  ->  q  =/=  r )

Proof of Theorem osumcllem4N
StepHypRef Expression
1 n0i 3637 . . 3  |-  ( r  e.  ( X  i^i  Y )  ->  -.  ( X  i^i  Y )  =  (/) )
2 incom 3538 . . . . . . 7  |-  ( X  i^i  Y )  =  ( Y  i^i  X
)
3 sslin 3571 . . . . . . . 8  |-  ( X 
C_  (  ._|_  `  Y
)  ->  ( Y  i^i  X )  C_  ( Y  i^i  (  ._|_  `  Y
) ) )
433ad2ant3 1011 . . . . . . 7  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y ) )  ->  ( Y  i^i  X )  C_  ( Y  i^i  (  ._|_  `  Y
) ) )
52, 4syl5eqss 3395 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y ) )  ->  ( X  i^i  Y )  C_  ( Y  i^i  (  ._|_  `  Y
) ) )
6 osumcllem.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
7 osumcllem.o . . . . . . . 8  |-  ._|_  =  ( _|_P `  K
)
86, 7pnonsingN 33470 . . . . . . 7  |-  ( ( K  e.  HL  /\  Y  C_  A )  -> 
( Y  i^i  (  ._|_  `  Y ) )  =  (/) )
983adant3 1008 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y ) )  ->  ( Y  i^i  (  ._|_  `  Y
) )  =  (/) )
105, 9sseqtrd 3387 . . . . 5  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y ) )  ->  ( X  i^i  Y )  C_  (/) )
11 ss0b 3662 . . . . 5  |-  ( ( X  i^i  Y ) 
C_  (/)  <->  ( X  i^i  Y )  =  (/) )
1210, 11sylib 196 . . . 4  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y ) )  ->  ( X  i^i  Y )  =  (/) )
1312adantr 465 . . 3  |-  ( ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y
) )  /\  (
r  e.  X  /\  q  e.  Y )
)  ->  ( X  i^i  Y )  =  (/) )
141, 13nsyl3 119 . 2  |-  ( ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y
) )  /\  (
r  e.  X  /\  q  e.  Y )
)  ->  -.  r  e.  ( X  i^i  Y
) )
15 simprr 756 . . . . . 6  |-  ( ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y
) )  /\  (
r  e.  X  /\  q  e.  Y )
)  ->  q  e.  Y )
16 eleq1 2498 . . . . . 6  |-  ( q  =  r  ->  (
q  e.  Y  <->  r  e.  Y ) )
1715, 16syl5ibcom 220 . . . . 5  |-  ( ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y
) )  /\  (
r  e.  X  /\  q  e.  Y )
)  ->  ( q  =  r  ->  r  e.  Y ) )
18 simprl 755 . . . . 5  |-  ( ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y
) )  /\  (
r  e.  X  /\  q  e.  Y )
)  ->  r  e.  X )
1917, 18jctild 543 . . . 4  |-  ( ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y
) )  /\  (
r  e.  X  /\  q  e.  Y )
)  ->  ( q  =  r  ->  ( r  e.  X  /\  r  e.  Y ) ) )
20 elin 3534 . . . 4  |-  ( r  e.  ( X  i^i  Y )  <->  ( r  e.  X  /\  r  e.  Y ) )
2119, 20syl6ibr 227 . . 3  |-  ( ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y
) )  /\  (
r  e.  X  /\  q  e.  Y )
)  ->  ( q  =  r  ->  r  e.  ( X  i^i  Y
) ) )
2221necon3bd 2640 . 2  |-  ( ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y
) )  /\  (
r  e.  X  /\  q  e.  Y )
)  ->  ( -.  r  e.  ( X  i^i  Y )  ->  q  =/=  r ) )
2314, 22mpd 15 1  |-  ( ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  (  ._|_  `  Y
) )  /\  (
r  e.  X  /\  q  e.  Y )
)  ->  q  =/=  r )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601    i^i cin 3322    C_ wss 3323   (/)c0 3632   {csn 3872   ` cfv 5413  (class class class)co 6086   lecple 14237   joincjn 15106   Atomscatm 32801   HLchlt 32888   +Pcpadd 33332   _|_PcpolN 33439   PSubClcpscN 33471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-riotaBAD 32497
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-undef 6784  df-poset 15108  df-plt 15120  df-lub 15136  df-glb 15137  df-join 15138  df-meet 15139  df-p0 15201  df-p1 15202  df-lat 15208  df-clat 15270  df-oposet 32714  df-ol 32716  df-oml 32717  df-covers 32804  df-ats 32805  df-atl 32836  df-cvlat 32860  df-hlat 32889  df-pmap 33041  df-polarityN 33440
This theorem is referenced by:  osumcllem6N  33498
  Copyright terms: Public domain W3C validator