Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem11N Structured version   Unicode version

Theorem osumcllem11N 33332
Description: Lemma for osumclN 33333. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcl.p  |-  .+  =  ( +P `  K
)
osumcl.o  |-  ._|_  =  ( _|_P `  K
)
osumcl.c  |-  C  =  ( PSubCl `  K )
Assertion
Ref Expression
osumcllem11N  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( X  .+  Y
)  =  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) ) )

Proof of Theorem osumcllem11N
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 nonconne 2613 . 2  |-  -.  ( X  =  X  /\  X  =/=  X )
2 simpl1 986 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  ->  K  e.  HL )
3 simpl2 987 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  ->  X  e.  C )
4 eqid 2441 . . . . . . . 8  |-  ( Atoms `  K )  =  (
Atoms `  K )
5 osumcl.c . . . . . . . 8  |-  C  =  ( PSubCl `  K )
64, 5psubclssatN 33307 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  C )  ->  X  C_  ( Atoms `  K ) )
72, 3, 6syl2anc 656 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  ->  X  C_  ( Atoms `  K
) )
8 simpl3 988 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  ->  Y  e.  C )
94, 5psubclssatN 33307 . . . . . . 7  |-  ( ( K  e.  HL  /\  Y  e.  C )  ->  Y  C_  ( Atoms `  K ) )
102, 8, 9syl2anc 656 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  ->  Y  C_  ( Atoms `  K
) )
11 osumcl.p . . . . . . 7  |-  .+  =  ( +P `  K
)
124, 11paddssat 33180 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
)  /\  Y  C_  ( Atoms `  K ) )  ->  ( X  .+  Y )  C_  ( Atoms `  K ) )
132, 7, 10, 12syl3anc 1213 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( X  .+  Y
)  C_  ( Atoms `  K ) )
14 osumcl.o . . . . . 6  |-  ._|_  =  ( _|_P `  K
)
154, 142polssN 33281 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  ( Atoms `  K
) )  ->  ( X  .+  Y )  C_  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )
162, 13, 15syl2anc 656 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( X  .+  Y
)  C_  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) ) )
17 df-pss 3341 . . . . . . 7  |-  ( ( X  .+  Y ) 
C.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  <-> 
( ( X  .+  Y )  C_  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  /\  ( X 
.+  Y )  =/=  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) ) )
18 pssnel 3741 . . . . . . 7  |-  ( ( X  .+  Y ) 
C.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  ->  E. p ( p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  /\  -.  p  e.  ( X  .+  Y
) ) )
1917, 18sylbir 213 . . . . . 6  |-  ( ( ( X  .+  Y
)  C_  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  /\  ( X 
.+  Y )  =/=  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  ->  E. p ( p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  /\  -.  p  e.  ( X  .+  Y
) ) )
20 df-rex 2719 . . . . . 6  |-  ( E. p  e.  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  -.  p  e.  ( X  .+  Y
)  <->  E. p ( p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  /\  -.  p  e.  ( X  .+  Y
) ) )
2119, 20sylibr 212 . . . . 5  |-  ( ( ( X  .+  Y
)  C_  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  /\  ( X 
.+  Y )  =/=  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  ->  E. p  e.  ( 
._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  -.  p  e.  ( X  .+  Y
) )
22 eqid 2441 . . . . . . . . . . 11  |-  ( le
`  K )  =  ( le `  K
)
23 eqid 2441 . . . . . . . . . . 11  |-  ( join `  K )  =  (
join `  K )
24 eqid 2441 . . . . . . . . . . 11  |-  ( X 
.+  { p }
)  =  ( X 
.+  { p }
)
25 eqid 2441 . . . . . . . . . . 11  |-  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  =  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )
2622, 23, 4, 11, 14, 5, 24, 25osumcllem9N 33330 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  ( X  .+  { p }
)  =  X )
27 simp11 1013 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  K  e.  HL )
28 simp12 1014 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  X  e.  C )
2927, 28, 6syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  X  C_  ( Atoms `  K )
)
30 simp13 1015 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  Y  e.  C )
3127, 30, 9syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  Y  C_  ( Atoms `  K )
)
32133adantr3 1144 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) ) )  ->  ( X  .+  Y )  C_  ( Atoms `  K ) )
33323adant3 1003 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  ( X  .+  Y )  C_  ( Atoms `  K )
)
344, 14polssatN 33274 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  ( Atoms `  K
) )  ->  (  ._|_  `  ( X  .+  Y ) )  C_  ( Atoms `  K )
)
3527, 33, 34syl2anc 656 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  (  ._|_  `  ( X  .+  Y ) )  C_  ( Atoms `  K )
)
364, 14polssatN 33274 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  (  ._|_  `  ( X  .+  Y ) )  C_  ( Atoms `  K )
)  ->  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  C_  ( Atoms `  K ) )
3727, 35, 36syl2anc 656 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  C_  ( Atoms `  K ) )
38 simp23 1018 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) ) )
3937, 38sseldd 3354 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  p  e.  ( Atoms `  K )
)
40 simp3 985 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  -.  p  e.  ( X  .+  Y ) )
4122, 23, 4, 11, 14, 5, 24, 25osumcllem10N 33331 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )
)  /\  p  e.  ( Atoms `  K )  /\  -.  p  e.  ( X  .+  Y ) )  ->  ( X  .+  { p } )  =/=  X )
4227, 29, 31, 39, 40, 41syl311anc 1227 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  ( X  .+  { p }
)  =/=  X )
4326, 42pm2.21ddne 2683 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  ( X  =  X  /\  X  =/=  X ) )
44433exp 1181 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) ) )  ->  ( -.  p  e.  ( X  .+  Y )  ->  ( X  =  X  /\  X  =/=  X ) ) ) )
45443expd 1199 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( X  C_  (  ._|_  `  Y )  -> 
( X  =/=  (/)  ->  (
p  e.  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  ->  ( -.  p  e.  ( X  .+  Y )  ->  ( X  =  X  /\  X  =/=  X ) ) ) ) ) )
4645imp32 433 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( p  e.  ( 
._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  ->  ( -.  p  e.  ( X  .+  Y )  ->  ( X  =  X  /\  X  =/=  X ) ) ) )
4746rexlimdv 2838 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( E. p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  -.  p  e.  ( X 
.+  Y )  -> 
( X  =  X  /\  X  =/=  X
) ) )
4821, 47syl5 32 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( ( ( X 
.+  Y )  C_  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  /\  ( X  .+  Y )  =/=  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) ) )  ->  ( X  =  X  /\  X  =/= 
X ) ) )
4916, 48mpand 670 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( ( X  .+  Y )  =/=  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  ->  ( X  =  X  /\  X  =/= 
X ) ) )
5049necon1bd 2677 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( -.  ( X  =  X  /\  X  =/=  X )  ->  ( X  .+  Y )  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) ) )
511, 50mpi 17 1  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( X  .+  Y
)  =  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364   E.wex 1591    e. wcel 1761    =/= wne 2604   E.wrex 2714    C_ wss 3325    C. wpss 3326   (/)c0 3634   {csn 3874   ` cfv 5415  (class class class)co 6090   lecple 14241   joincjn 15110   Atomscatm 32630   HLchlt 32717   +Pcpadd 33161   _|_PcpolN 33268   PSubClcpscN 33300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-riotaBAD 32326
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-undef 6788  df-poset 15112  df-plt 15124  df-lub 15140  df-glb 15141  df-join 15142  df-meet 15143  df-p0 15205  df-p1 15206  df-lat 15212  df-clat 15274  df-oposet 32543  df-ol 32545  df-oml 32546  df-covers 32633  df-ats 32634  df-atl 32665  df-cvlat 32689  df-hlat 32718  df-psubsp 32869  df-pmap 32870  df-padd 33162  df-polarityN 33269  df-psubclN 33301
This theorem is referenced by:  osumclN  33333
  Copyright terms: Public domain W3C validator