Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem11N Structured version   Unicode version

Theorem osumcllem11N 35565
Description: Lemma for osumclN 35566. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcl.p  |-  .+  =  ( +P `  K
)
osumcl.o  |-  ._|_  =  ( _|_P `  K
)
osumcl.c  |-  C  =  ( PSubCl `  K )
Assertion
Ref Expression
osumcllem11N  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( X  .+  Y
)  =  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) ) )

Proof of Theorem osumcllem11N
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 nonconne 2651 . 2  |-  -.  ( X  =  X  /\  X  =/=  X )
2 simpl1 1000 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  ->  K  e.  HL )
3 simpl2 1001 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  ->  X  e.  C )
4 eqid 2443 . . . . . . . 8  |-  ( Atoms `  K )  =  (
Atoms `  K )
5 osumcl.c . . . . . . . 8  |-  C  =  ( PSubCl `  K )
64, 5psubclssatN 35540 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  C )  ->  X  C_  ( Atoms `  K ) )
72, 3, 6syl2anc 661 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  ->  X  C_  ( Atoms `  K
) )
8 simpl3 1002 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  ->  Y  e.  C )
94, 5psubclssatN 35540 . . . . . . 7  |-  ( ( K  e.  HL  /\  Y  e.  C )  ->  Y  C_  ( Atoms `  K ) )
102, 8, 9syl2anc 661 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  ->  Y  C_  ( Atoms `  K
) )
11 osumcl.p . . . . . . 7  |-  .+  =  ( +P `  K
)
124, 11paddssat 35413 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
)  /\  Y  C_  ( Atoms `  K ) )  ->  ( X  .+  Y )  C_  ( Atoms `  K ) )
132, 7, 10, 12syl3anc 1229 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( X  .+  Y
)  C_  ( Atoms `  K ) )
14 osumcl.o . . . . . 6  |-  ._|_  =  ( _|_P `  K
)
154, 142polssN 35514 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  ( Atoms `  K
) )  ->  ( X  .+  Y )  C_  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )
162, 13, 15syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( X  .+  Y
)  C_  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) ) )
17 df-pss 3477 . . . . . . 7  |-  ( ( X  .+  Y ) 
C.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  <-> 
( ( X  .+  Y )  C_  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  /\  ( X 
.+  Y )  =/=  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) ) )
18 pssnel 3879 . . . . . . 7  |-  ( ( X  .+  Y ) 
C.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  ->  E. p ( p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  /\  -.  p  e.  ( X  .+  Y
) ) )
1917, 18sylbir 213 . . . . . 6  |-  ( ( ( X  .+  Y
)  C_  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  /\  ( X 
.+  Y )  =/=  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  ->  E. p ( p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  /\  -.  p  e.  ( X  .+  Y
) ) )
20 df-rex 2799 . . . . . 6  |-  ( E. p  e.  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  -.  p  e.  ( X  .+  Y
)  <->  E. p ( p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  /\  -.  p  e.  ( X  .+  Y
) ) )
2119, 20sylibr 212 . . . . 5  |-  ( ( ( X  .+  Y
)  C_  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  /\  ( X 
.+  Y )  =/=  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  ->  E. p  e.  ( 
._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  -.  p  e.  ( X  .+  Y
) )
22 eqid 2443 . . . . . . . . . . 11  |-  ( le
`  K )  =  ( le `  K
)
23 eqid 2443 . . . . . . . . . . 11  |-  ( join `  K )  =  (
join `  K )
24 eqid 2443 . . . . . . . . . . 11  |-  ( X 
.+  { p }
)  =  ( X 
.+  { p }
)
25 eqid 2443 . . . . . . . . . . 11  |-  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  =  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )
2622, 23, 4, 11, 14, 5, 24, 25osumcllem9N 35563 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  ( X  .+  { p }
)  =  X )
27 simp11 1027 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  K  e.  HL )
28 simp12 1028 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  X  e.  C )
2927, 28, 6syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  X  C_  ( Atoms `  K )
)
30 simp13 1029 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  Y  e.  C )
3127, 30, 9syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  Y  C_  ( Atoms `  K )
)
32133adantr3 1158 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) ) )  ->  ( X  .+  Y )  C_  ( Atoms `  K ) )
33323adant3 1017 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  ( X  .+  Y )  C_  ( Atoms `  K )
)
344, 14polssatN 35507 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  ( Atoms `  K
) )  ->  (  ._|_  `  ( X  .+  Y ) )  C_  ( Atoms `  K )
)
3527, 33, 34syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  (  ._|_  `  ( X  .+  Y ) )  C_  ( Atoms `  K )
)
364, 14polssatN 35507 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  (  ._|_  `  ( X  .+  Y ) )  C_  ( Atoms `  K )
)  ->  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  C_  ( Atoms `  K ) )
3727, 35, 36syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  C_  ( Atoms `  K ) )
38 simp23 1032 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) ) )
3937, 38sseldd 3490 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  p  e.  ( Atoms `  K )
)
40 simp3 999 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  -.  p  e.  ( X  .+  Y ) )
4122, 23, 4, 11, 14, 5, 24, 25osumcllem10N 35564 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )
)  /\  p  e.  ( Atoms `  K )  /\  -.  p  e.  ( X  .+  Y ) )  ->  ( X  .+  { p } )  =/=  X )
4227, 29, 31, 39, 40, 41syl311anc 1243 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  ( X  .+  { p }
)  =/=  X )
4326, 42pm2.21ddne 2757 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  ( X  =  X  /\  X  =/=  X ) )
44433exp 1196 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) ) )  ->  ( -.  p  e.  ( X  .+  Y )  ->  ( X  =  X  /\  X  =/=  X ) ) ) )
45443expd 1214 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( X  C_  (  ._|_  `  Y )  -> 
( X  =/=  (/)  ->  (
p  e.  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  ->  ( -.  p  e.  ( X  .+  Y )  ->  ( X  =  X  /\  X  =/=  X ) ) ) ) ) )
4645imp32 433 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( p  e.  ( 
._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  ->  ( -.  p  e.  ( X  .+  Y )  ->  ( X  =  X  /\  X  =/=  X ) ) ) )
4746rexlimdv 2933 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( E. p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  -.  p  e.  ( X 
.+  Y )  -> 
( X  =  X  /\  X  =/=  X
) ) )
4821, 47syl5 32 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( ( ( X 
.+  Y )  C_  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  /\  ( X  .+  Y )  =/=  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) ) )  ->  ( X  =  X  /\  X  =/= 
X ) ) )
4916, 48mpand 675 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( ( X  .+  Y )  =/=  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  ->  ( X  =  X  /\  X  =/= 
X ) ) )
5049necon1bd 2661 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( -.  ( X  =  X  /\  X  =/=  X )  ->  ( X  .+  Y )  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) ) )
511, 50mpi 17 1  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( X  .+  Y
)  =  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383   E.wex 1599    e. wcel 1804    =/= wne 2638   E.wrex 2794    C_ wss 3461    C. wpss 3462   (/)c0 3770   {csn 4014   ` cfv 5578  (class class class)co 6281   lecple 14686   joincjn 15552   Atomscatm 34863   HLchlt 34950   +Pcpadd 35394   _|_PcpolN 35501   PSubClcpscN 35533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-riotaBAD 34559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-1st 6785  df-2nd 6786  df-undef 7004  df-preset 15536  df-poset 15554  df-plt 15567  df-lub 15583  df-glb 15584  df-join 15585  df-meet 15586  df-p0 15648  df-p1 15649  df-lat 15655  df-clat 15717  df-oposet 34776  df-ol 34778  df-oml 34779  df-covers 34866  df-ats 34867  df-atl 34898  df-cvlat 34922  df-hlat 34951  df-psubsp 35102  df-pmap 35103  df-padd 35395  df-polarityN 35502  df-psubclN 35534
This theorem is referenced by:  osumclN  35566
  Copyright terms: Public domain W3C validator