Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem11N Structured version   Visualization version   Unicode version

Theorem osumcllem11N 33531
Description: Lemma for osumclN 33532. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcl.p  |-  .+  =  ( +P `  K
)
osumcl.o  |-  ._|_  =  ( _|_P `  K
)
osumcl.c  |-  C  =  ( PSubCl `  K )
Assertion
Ref Expression
osumcllem11N  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( X  .+  Y
)  =  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) ) )

Proof of Theorem osumcllem11N
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 nonconne 2635 . 2  |-  -.  ( X  =  X  /\  X  =/=  X )
2 simpl1 1011 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  ->  K  e.  HL )
3 simpl2 1012 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  ->  X  e.  C )
4 eqid 2451 . . . . . . . 8  |-  ( Atoms `  K )  =  (
Atoms `  K )
5 osumcl.c . . . . . . . 8  |-  C  =  ( PSubCl `  K )
64, 5psubclssatN 33506 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  C )  ->  X  C_  ( Atoms `  K ) )
72, 3, 6syl2anc 667 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  ->  X  C_  ( Atoms `  K
) )
8 simpl3 1013 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  ->  Y  e.  C )
94, 5psubclssatN 33506 . . . . . . 7  |-  ( ( K  e.  HL  /\  Y  e.  C )  ->  Y  C_  ( Atoms `  K ) )
102, 8, 9syl2anc 667 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  ->  Y  C_  ( Atoms `  K
) )
11 osumcl.p . . . . . . 7  |-  .+  =  ( +P `  K
)
124, 11paddssat 33379 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
)  /\  Y  C_  ( Atoms `  K ) )  ->  ( X  .+  Y )  C_  ( Atoms `  K ) )
132, 7, 10, 12syl3anc 1268 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( X  .+  Y
)  C_  ( Atoms `  K ) )
14 osumcl.o . . . . . 6  |-  ._|_  =  ( _|_P `  K
)
154, 142polssN 33480 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  ( Atoms `  K
) )  ->  ( X  .+  Y )  C_  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )
162, 13, 15syl2anc 667 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( X  .+  Y
)  C_  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) ) )
17 df-pss 3420 . . . . . . 7  |-  ( ( X  .+  Y ) 
C.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  <-> 
( ( X  .+  Y )  C_  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  /\  ( X 
.+  Y )  =/=  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) ) )
18 pssnel 3832 . . . . . . 7  |-  ( ( X  .+  Y ) 
C.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  ->  E. p ( p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  /\  -.  p  e.  ( X  .+  Y
) ) )
1917, 18sylbir 217 . . . . . 6  |-  ( ( ( X  .+  Y
)  C_  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  /\  ( X 
.+  Y )  =/=  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  ->  E. p ( p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  /\  -.  p  e.  ( X  .+  Y
) ) )
20 df-rex 2743 . . . . . 6  |-  ( E. p  e.  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  -.  p  e.  ( X  .+  Y
)  <->  E. p ( p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  /\  -.  p  e.  ( X  .+  Y
) ) )
2119, 20sylibr 216 . . . . 5  |-  ( ( ( X  .+  Y
)  C_  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  /\  ( X 
.+  Y )  =/=  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  ->  E. p  e.  ( 
._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  -.  p  e.  ( X  .+  Y
) )
22 eqid 2451 . . . . . . . . . . 11  |-  ( le
`  K )  =  ( le `  K
)
23 eqid 2451 . . . . . . . . . . 11  |-  ( join `  K )  =  (
join `  K )
24 eqid 2451 . . . . . . . . . . 11  |-  ( X 
.+  { p }
)  =  ( X 
.+  { p }
)
25 eqid 2451 . . . . . . . . . . 11  |-  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  =  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )
2622, 23, 4, 11, 14, 5, 24, 25osumcllem9N 33529 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  ( X  .+  { p }
)  =  X )
27 simp11 1038 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  K  e.  HL )
28 simp12 1039 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  X  e.  C )
2927, 28, 6syl2anc 667 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  X  C_  ( Atoms `  K )
)
30 simp13 1040 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  Y  e.  C )
3127, 30, 9syl2anc 667 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  Y  C_  ( Atoms `  K )
)
32133adantr3 1169 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) ) )  ->  ( X  .+  Y )  C_  ( Atoms `  K ) )
33323adant3 1028 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  ( X  .+  Y )  C_  ( Atoms `  K )
)
344, 14polssatN 33473 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  ( Atoms `  K
) )  ->  (  ._|_  `  ( X  .+  Y ) )  C_  ( Atoms `  K )
)
3527, 33, 34syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  (  ._|_  `  ( X  .+  Y ) )  C_  ( Atoms `  K )
)
364, 14polssatN 33473 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  (  ._|_  `  ( X  .+  Y ) )  C_  ( Atoms `  K )
)  ->  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  C_  ( Atoms `  K ) )
3727, 35, 36syl2anc 667 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  C_  ( Atoms `  K ) )
38 simp23 1043 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) ) )
3937, 38sseldd 3433 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  p  e.  ( Atoms `  K )
)
40 simp3 1010 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  -.  p  e.  ( X  .+  Y ) )
4122, 23, 4, 11, 14, 5, 24, 25osumcllem10N 33530 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )
)  /\  p  e.  ( Atoms `  K )  /\  -.  p  e.  ( X  .+  Y ) )  ->  ( X  .+  { p } )  =/=  X )
4227, 29, 31, 39, 40, 41syl311anc 1282 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  ( X  .+  { p }
)  =/=  X )
4326, 42pm2.21ddne 2708 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )  /\  -.  p  e.  ( X  .+  Y
) )  ->  ( X  =  X  /\  X  =/=  X ) )
44433exp 1207 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) ) )  ->  ( -.  p  e.  ( X  .+  Y )  ->  ( X  =  X  /\  X  =/=  X ) ) ) )
45443expd 1226 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( X  C_  (  ._|_  `  Y )  -> 
( X  =/=  (/)  ->  (
p  e.  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  ->  ( -.  p  e.  ( X  .+  Y )  ->  ( X  =  X  /\  X  =/=  X ) ) ) ) ) )
4645imp32 435 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( p  e.  ( 
._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  ->  ( -.  p  e.  ( X  .+  Y )  ->  ( X  =  X  /\  X  =/=  X ) ) ) )
4746rexlimdv 2877 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( E. p  e.  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  -.  p  e.  ( X 
.+  Y )  -> 
( X  =  X  /\  X  =/=  X
) ) )
4821, 47syl5 33 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( ( ( X 
.+  Y )  C_  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  /\  ( X  .+  Y )  =/=  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) ) )  ->  ( X  =  X  /\  X  =/= 
X ) ) )
4916, 48mpand 681 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( ( X  .+  Y )  =/=  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  ->  ( X  =  X  /\  X  =/= 
X ) ) )
5049necon1bd 2642 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( -.  ( X  =  X  /\  X  =/=  X )  ->  ( X  .+  Y )  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) ) )
511, 50mpi 20 1  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( X  .+  Y
)  =  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444   E.wex 1663    e. wcel 1887    =/= wne 2622   E.wrex 2738    C_ wss 3404    C. wpss 3405   (/)c0 3731   {csn 3968   ` cfv 5582  (class class class)co 6290   lecple 15197   joincjn 16189   Atomscatm 32829   HLchlt 32916   +Pcpadd 33360   _|_PcpolN 33467   PSubClcpscN 33499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-riotaBAD 32525
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-1st 6793  df-2nd 6794  df-undef 7020  df-preset 16173  df-poset 16191  df-plt 16204  df-lub 16220  df-glb 16221  df-join 16222  df-meet 16223  df-p0 16285  df-p1 16286  df-lat 16292  df-clat 16354  df-oposet 32742  df-ol 32744  df-oml 32745  df-covers 32832  df-ats 32833  df-atl 32864  df-cvlat 32888  df-hlat 32917  df-psubsp 33068  df-pmap 33069  df-padd 33361  df-polarityN 33468  df-psubclN 33500
This theorem is referenced by:  osumclN  33532
  Copyright terms: Public domain W3C validator