MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostthlem2 Structured version   Unicode version

Theorem ostthlem2 23679
Description: Lemma for ostth 23690. Refine ostthlem1 23678 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
ostthlem1.1  |-  ( ph  ->  F  e.  A )
ostthlem1.2  |-  ( ph  ->  G  e.  A )
ostthlem2.3  |-  ( (
ph  /\  p  e.  Prime )  ->  ( F `  p )  =  ( G `  p ) )
Assertion
Ref Expression
ostthlem2  |-  ( ph  ->  F  =  G )
Distinct variable groups:    G, p    ph, p    A, p    F, p
Allowed substitution hint:    Q( p)

Proof of Theorem ostthlem2
Dummy variables  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qrng.q . 2  |-  Q  =  (flds  QQ )
2 qabsabv.a . 2  |-  A  =  (AbsVal `  Q )
3 ostthlem1.1 . 2  |-  ( ph  ->  F  e.  A )
4 ostthlem1.2 . 2  |-  ( ph  ->  G  e.  A )
5 eluz2b2 11166 . . . 4  |-  ( n  e.  ( ZZ>= `  2
)  <->  ( n  e.  NN  /\  1  < 
n ) )
65simplbi 460 . . 3  |-  ( n  e.  ( ZZ>= `  2
)  ->  n  e.  NN )
7 fveq2 5872 . . . . . . 7  |-  ( p  =  1  ->  ( F `  p )  =  ( F ` 
1 ) )
8 fveq2 5872 . . . . . . 7  |-  ( p  =  1  ->  ( G `  p )  =  ( G ` 
1 ) )
97, 8eqeq12d 2489 . . . . . 6  |-  ( p  =  1  ->  (
( F `  p
)  =  ( G `
 p )  <->  ( F `  1 )  =  ( G `  1
) ) )
109imbi2d 316 . . . . 5  |-  ( p  =  1  ->  (
( ph  ->  ( F `
 p )  =  ( G `  p
) )  <->  ( ph  ->  ( F `  1
)  =  ( G `
 1 ) ) ) )
11 fveq2 5872 . . . . . . 7  |-  ( p  =  y  ->  ( F `  p )  =  ( F `  y ) )
12 fveq2 5872 . . . . . . 7  |-  ( p  =  y  ->  ( G `  p )  =  ( G `  y ) )
1311, 12eqeq12d 2489 . . . . . 6  |-  ( p  =  y  ->  (
( F `  p
)  =  ( G `
 p )  <->  ( F `  y )  =  ( G `  y ) ) )
1413imbi2d 316 . . . . 5  |-  ( p  =  y  ->  (
( ph  ->  ( F `
 p )  =  ( G `  p
) )  <->  ( ph  ->  ( F `  y
)  =  ( G `
 y ) ) ) )
15 fveq2 5872 . . . . . . 7  |-  ( p  =  z  ->  ( F `  p )  =  ( F `  z ) )
16 fveq2 5872 . . . . . . 7  |-  ( p  =  z  ->  ( G `  p )  =  ( G `  z ) )
1715, 16eqeq12d 2489 . . . . . 6  |-  ( p  =  z  ->  (
( F `  p
)  =  ( G `
 p )  <->  ( F `  z )  =  ( G `  z ) ) )
1817imbi2d 316 . . . . 5  |-  ( p  =  z  ->  (
( ph  ->  ( F `
 p )  =  ( G `  p
) )  <->  ( ph  ->  ( F `  z
)  =  ( G `
 z ) ) ) )
19 fveq2 5872 . . . . . . 7  |-  ( p  =  ( y  x.  z )  ->  ( F `  p )  =  ( F `  ( y  x.  z
) ) )
20 fveq2 5872 . . . . . . 7  |-  ( p  =  ( y  x.  z )  ->  ( G `  p )  =  ( G `  ( y  x.  z
) ) )
2119, 20eqeq12d 2489 . . . . . 6  |-  ( p  =  ( y  x.  z )  ->  (
( F `  p
)  =  ( G `
 p )  <->  ( F `  ( y  x.  z
) )  =  ( G `  ( y  x.  z ) ) ) )
2221imbi2d 316 . . . . 5  |-  ( p  =  ( y  x.  z )  ->  (
( ph  ->  ( F `
 p )  =  ( G `  p
) )  <->  ( ph  ->  ( F `  (
y  x.  z ) )  =  ( G `
 ( y  x.  z ) ) ) ) )
23 fveq2 5872 . . . . . . 7  |-  ( p  =  n  ->  ( F `  p )  =  ( F `  n ) )
24 fveq2 5872 . . . . . . 7  |-  ( p  =  n  ->  ( G `  p )  =  ( G `  n ) )
2523, 24eqeq12d 2489 . . . . . 6  |-  ( p  =  n  ->  (
( F `  p
)  =  ( G `
 p )  <->  ( F `  n )  =  ( G `  n ) ) )
2625imbi2d 316 . . . . 5  |-  ( p  =  n  ->  (
( ph  ->  ( F `
 p )  =  ( G `  p
) )  <->  ( ph  ->  ( F `  n
)  =  ( G `
 n ) ) ) )
27 ax-1ne0 9573 . . . . . . 7  |-  1  =/=  0
281qrng1 23673 . . . . . . . 8  |-  1  =  ( 1r `  Q )
291qrng0 23672 . . . . . . . 8  |-  0  =  ( 0g `  Q )
302, 28, 29abv1z 17352 . . . . . . 7  |-  ( ( F  e.  A  /\  1  =/=  0 )  -> 
( F `  1
)  =  1 )
313, 27, 30sylancl 662 . . . . . 6  |-  ( ph  ->  ( F `  1
)  =  1 )
322, 28, 29abv1z 17352 . . . . . . 7  |-  ( ( G  e.  A  /\  1  =/=  0 )  -> 
( G `  1
)  =  1 )
334, 27, 32sylancl 662 . . . . . 6  |-  ( ph  ->  ( G `  1
)  =  1 )
3431, 33eqtr4d 2511 . . . . 5  |-  ( ph  ->  ( F `  1
)  =  ( G `
 1 ) )
35 ostthlem2.3 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  ( F `  p )  =  ( G `  p ) )
3635expcom 435 . . . . 5  |-  ( p  e.  Prime  ->  ( ph  ->  ( F `  p
)  =  ( G `
 p ) ) )
37 jcab 861 . . . . . 6  |-  ( (
ph  ->  ( ( F `
 y )  =  ( G `  y
)  /\  ( F `  z )  =  ( G `  z ) ) )  <->  ( ( ph  ->  ( F `  y )  =  ( G `  y ) )  /\  ( ph  ->  ( F `  z
)  =  ( G `
 z ) ) ) )
38 oveq12 6304 . . . . . . . . 9  |-  ( ( ( F `  y
)  =  ( G `
 y )  /\  ( F `  z )  =  ( G `  z ) )  -> 
( ( F `  y )  x.  ( F `  z )
)  =  ( ( G `  y )  x.  ( G `  z ) ) )
393adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  F  e.  A )
40 eluzelz 11103 . . . . . . . . . . . . 13  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  ZZ )
4140ad2antrl 727 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  y  e.  ZZ )
42 zq 11200 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  y  e.  QQ )
4341, 42syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  y  e.  QQ )
44 eluzelz 11103 . . . . . . . . . . . . 13  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
4544ad2antll 728 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  z  e.  ZZ )
46 zq 11200 . . . . . . . . . . . 12  |-  ( z  e.  ZZ  ->  z  e.  QQ )
4745, 46syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  z  e.  QQ )
481qrngbas 23670 . . . . . . . . . . . 12  |-  QQ  =  ( Base `  Q )
49 qex 11206 . . . . . . . . . . . . 13  |-  QQ  e.  _V
50 cnfldmul 18296 . . . . . . . . . . . . . 14  |-  x.  =  ( .r ` fld )
511, 50ressmulr 14625 . . . . . . . . . . . . 13  |-  ( QQ  e.  _V  ->  x.  =  ( .r `  Q ) )
5249, 51ax-mp 5 . . . . . . . . . . . 12  |-  x.  =  ( .r `  Q )
532, 48, 52abvmul 17349 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  y  e.  QQ  /\  z  e.  QQ )  ->  ( F `  ( y  x.  z ) )  =  ( ( F `  y )  x.  ( F `  z )
) )
5439, 43, 47, 53syl3anc 1228 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  ( F `  ( y  x.  z
) )  =  ( ( F `  y
)  x.  ( F `
 z ) ) )
554adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  G  e.  A )
562, 48, 52abvmul 17349 . . . . . . . . . . 11  |-  ( ( G  e.  A  /\  y  e.  QQ  /\  z  e.  QQ )  ->  ( G `  ( y  x.  z ) )  =  ( ( G `  y )  x.  ( G `  z )
) )
5755, 43, 47, 56syl3anc 1228 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  ( G `  ( y  x.  z
) )  =  ( ( G `  y
)  x.  ( G `
 z ) ) )
5854, 57eqeq12d 2489 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  ( ( F `  ( y  x.  z ) )  =  ( G `  (
y  x.  z ) )  <->  ( ( F `
 y )  x.  ( F `  z
) )  =  ( ( G `  y
)  x.  ( G `
 z ) ) ) )
5938, 58syl5ibr 221 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( ZZ>= `  2 )  /\  z  e.  ( ZZ>=
`  2 ) ) )  ->  ( (
( F `  y
)  =  ( G `
 y )  /\  ( F `  z )  =  ( G `  z ) )  -> 
( F `  (
y  x.  z ) )  =  ( G `
 ( y  x.  z ) ) ) )
6059expcom 435 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ph  ->  ( ( ( F `
 y )  =  ( G `  y
)  /\  ( F `  z )  =  ( G `  z ) )  ->  ( F `  ( y  x.  z
) )  =  ( G `  ( y  x.  z ) ) ) ) )
6160a2d 26 . . . . . 6  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( ph  ->  ( ( F `
 y )  =  ( G `  y
)  /\  ( F `  z )  =  ( G `  z ) ) )  ->  ( ph  ->  ( F `  ( y  x.  z
) )  =  ( G `  ( y  x.  z ) ) ) ) )
6237, 61syl5bir 218 . . . . 5  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
( ph  ->  ( F `
 y )  =  ( G `  y
) )  /\  ( ph  ->  ( F `  z )  =  ( G `  z ) ) )  ->  ( ph  ->  ( F `  ( y  x.  z
) )  =  ( G `  ( y  x.  z ) ) ) ) )
6310, 14, 18, 22, 26, 34, 36, 62prmind 14105 . . . 4  |-  ( n  e.  NN  ->  ( ph  ->  ( F `  n )  =  ( G `  n ) ) )
6463impcom 430 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  =  ( G `  n
) )
656, 64sylan2 474 . 2  |-  ( (
ph  /\  n  e.  ( ZZ>= `  2 )
)  ->  ( F `  n )  =  ( G `  n ) )
661, 2, 3, 4, 65ostthlem1 23678 1  |-  ( ph  ->  F  =  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3118   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   0cc0 9504   1c1 9505    x. cmul 9509    < clt 9640   NNcn 10548   2c2 10597   ZZcz 10876   ZZ>=cuz 11094   QQcq 11194   Primecprime 14093   ↾s cress 14508   .rcmulr 14573  AbsValcabv 17336  ℂfldccnfld 18290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-tpos 6967  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-ico 11547  df-fz 11685  df-seq 12088  df-exp 12147  df-dvds 13865  df-prm 14094  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-starv 14587  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-0g 14714  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15929  df-minusg 15930  df-subg 16070  df-cmn 16673  df-mgp 17014  df-ur 17026  df-ring 17072  df-cring 17073  df-oppr 17144  df-dvdsr 17162  df-unit 17163  df-invr 17193  df-dvr 17204  df-drng 17269  df-subrg 17298  df-abv 17337  df-cnfld 18291
This theorem is referenced by:  ostth1  23684  ostth3  23689
  Copyright terms: Public domain W3C validator