MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth3 Structured version   Unicode version

Theorem ostth3 24021
Description: - Lemma for ostth 24022: p-adic case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
ostth.k  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
ostth.1  |-  ( ph  ->  F  e.  A )
ostth3.2  |-  ( ph  ->  A. n  e.  NN  -.  1  <  ( F `
 n ) )
ostth3.3  |-  ( ph  ->  P  e.  Prime )
ostth3.4  |-  ( ph  ->  ( F `  P
)  <  1 )
ostth3.5  |-  R  = 
-u ( ( log `  ( F `  P
) )  /  ( log `  P ) )
ostth3.6  |-  S  =  if ( ( F `
 P )  <_ 
( F `  p
) ,  ( F `
 p ) ,  ( F `  P
) )
Assertion
Ref Expression
ostth3  |-  ( ph  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  a ) ) )
Distinct variable groups:    n, p, y    n, K    x, n, a, p, q, y, ph    J, a, p, y    S, a    A, a, n, p, q, x, y    Q, n, x, y    F, a, n, p, q, y    P, a, p, q, x, y    R, a, p, q, y    x, F
Allowed substitution hints:    P( n)    Q( q, p, a)    R( x, n)    S( x, y, n, q, p)    J( x, n, q)    K( x, y, q, p, a)

Proof of Theorem ostth3
Dummy variables  k 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ostth3.5 . . . 4  |-  R  = 
-u ( ( log `  ( F `  P
) )  /  ( log `  P ) )
2 ostth.1 . . . . . . . . 9  |-  ( ph  ->  F  e.  A )
3 ostth3.3 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  Prime )
4 prmuz2 14319 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
53, 4syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
6 eluz2b2 11155 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
75, 6sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  ( P  e.  NN  /\  1  <  P ) )
87simpld 457 . . . . . . . . . 10  |-  ( ph  ->  P  e.  NN )
9 nnq 11196 . . . . . . . . . 10  |-  ( P  e.  NN  ->  P  e.  QQ )
108, 9syl 16 . . . . . . . . 9  |-  ( ph  ->  P  e.  QQ )
11 qabsabv.a . . . . . . . . . 10  |-  A  =  (AbsVal `  Q )
12 qrng.q . . . . . . . . . . 11  |-  Q  =  (flds  QQ )
1312qrngbas 24002 . . . . . . . . . 10  |-  QQ  =  ( Base `  Q )
1411, 13abvcl 17668 . . . . . . . . 9  |-  ( ( F  e.  A  /\  P  e.  QQ )  ->  ( F `  P
)  e.  RR )
152, 10, 14syl2anc 659 . . . . . . . 8  |-  ( ph  ->  ( F `  P
)  e.  RR )
168nnne0d 10576 . . . . . . . . 9  |-  ( ph  ->  P  =/=  0 )
1712qrng0 24004 . . . . . . . . . 10  |-  0  =  ( 0g `  Q )
1811, 13, 17abvgt0 17672 . . . . . . . . 9  |-  ( ( F  e.  A  /\  P  e.  QQ  /\  P  =/=  0 )  ->  0  <  ( F `  P
) )
192, 10, 16, 18syl3anc 1226 . . . . . . . 8  |-  ( ph  ->  0  <  ( F `
 P ) )
2015, 19elrpd 11256 . . . . . . 7  |-  ( ph  ->  ( F `  P
)  e.  RR+ )
2120relogcld 23176 . . . . . 6  |-  ( ph  ->  ( log `  ( F `  P )
)  e.  RR )
228nnred 10546 . . . . . . 7  |-  ( ph  ->  P  e.  RR )
237simprd 461 . . . . . . 7  |-  ( ph  ->  1  <  P )
2422, 23rplogcld 23182 . . . . . 6  |-  ( ph  ->  ( log `  P
)  e.  RR+ )
2521, 24rerpdivcld 11286 . . . . 5  |-  ( ph  ->  ( ( log `  ( F `  P )
)  /  ( log `  P ) )  e.  RR )
2625renegcld 9982 . . . 4  |-  ( ph  -> 
-u ( ( log `  ( F `  P
) )  /  ( log `  P ) )  e.  RR )
271, 26syl5eqel 2546 . . 3  |-  ( ph  ->  R  e.  RR )
28 ostth3.4 . . . . . . . . 9  |-  ( ph  ->  ( F `  P
)  <  1 )
29 1rp 11225 . . . . . . . . . 10  |-  1  e.  RR+
30 logltb 23153 . . . . . . . . . 10  |-  ( ( ( F `  P
)  e.  RR+  /\  1  e.  RR+ )  ->  (
( F `  P
)  <  1  <->  ( log `  ( F `  P
) )  <  ( log `  1 ) ) )
3120, 29, 30sylancl 660 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  P )  <  1  <->  ( log `  ( F `
 P ) )  <  ( log `  1
) ) )
3228, 31mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( log `  ( F `  P )
)  <  ( log `  1 ) )
33 log1 23139 . . . . . . . 8  |-  ( log `  1 )  =  0
3432, 33syl6breq 4478 . . . . . . 7  |-  ( ph  ->  ( log `  ( F `  P )
)  <  0 )
3524rpcnd 11261 . . . . . . . 8  |-  ( ph  ->  ( log `  P
)  e.  CC )
3635mul01d 9768 . . . . . . 7  |-  ( ph  ->  ( ( log `  P
)  x.  0 )  =  0 )
3734, 36breqtrrd 4465 . . . . . 6  |-  ( ph  ->  ( log `  ( F `  P )
)  <  ( ( log `  P )  x.  0 ) )
38 0red 9586 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
3921, 38, 24ltdivmuld 11306 . . . . . 6  |-  ( ph  ->  ( ( ( log `  ( F `  P
) )  /  ( log `  P ) )  <  0  <->  ( log `  ( F `  P
) )  <  (
( log `  P
)  x.  0 ) ) )
4037, 39mpbird 232 . . . . 5  |-  ( ph  ->  ( ( log `  ( F `  P )
)  /  ( log `  P ) )  <  0 )
4125lt0neg1d 10118 . . . . 5  |-  ( ph  ->  ( ( ( log `  ( F `  P
) )  /  ( log `  P ) )  <  0  <->  0  <  -u ( ( log `  ( F `  P )
)  /  ( log `  P ) ) ) )
4240, 41mpbid 210 . . . 4  |-  ( ph  ->  0  <  -u (
( log `  ( F `  P )
)  /  ( log `  P ) ) )
4342, 1syl6breqr 4479 . . 3  |-  ( ph  ->  0  <  R )
4427, 43elrpd 11256 . 2  |-  ( ph  ->  R  e.  RR+ )
45 padic.j . . . . 5  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
4612, 11, 45padicabvcxp 24015 . . . 4  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  (
y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  R ) )  e.  A
)
473, 44, 46syl2anc 659 . . 3  |-  ( ph  ->  ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) )  e.  A )
48 fveq2 5848 . . . . . . . . . 10  |-  ( y  =  P  ->  (
( J `  P
) `  y )  =  ( ( J `
 P ) `  P ) )
4948oveq1d 6285 . . . . . . . . 9  |-  ( y  =  P  ->  (
( ( J `  P ) `  y
)  ^c  R )  =  ( ( ( J `  P
) `  P )  ^c  R )
)
50 eqid 2454 . . . . . . . . 9  |-  ( y  e.  QQ  |->  ( ( ( J `  P
) `  y )  ^c  R )
)  =  ( y  e.  QQ  |->  ( ( ( J `  P
) `  y )  ^c  R )
)
51 ovex 6298 . . . . . . . . 9  |-  ( ( ( J `  P
) `  P )  ^c  R )  e.  _V
5249, 50, 51fvmpt 5931 . . . . . . . 8  |-  ( P  e.  QQ  ->  (
( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  P )  =  ( ( ( J `  P ) `  P
)  ^c  R ) )
5310, 52syl 16 . . . . . . 7  |-  ( ph  ->  ( ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  R ) ) `  P )  =  ( ( ( J `  P ) `  P
)  ^c  R ) )
5445padicval 24000 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  P  e.  QQ )  ->  (
( J `  P
) `  P )  =  if ( P  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  P ) ) ) )
553, 10, 54syl2anc 659 . . . . . . . . 9  |-  ( ph  ->  ( ( J `  P ) `  P
)  =  if ( P  =  0 ,  0 ,  ( P ^ -u ( P 
pCnt  P ) ) ) )
5616neneqd 2656 . . . . . . . . . 10  |-  ( ph  ->  -.  P  =  0 )
5756iffalsed 3940 . . . . . . . . 9  |-  ( ph  ->  if ( P  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  P ) ) )  =  ( P ^ -u ( P 
pCnt  P ) ) )
588nncnd 10547 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  CC )
5958exp1d 12287 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P ^ 1 )  =  P )
6059oveq2d 6286 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P  pCnt  ( P ^ 1 ) )  =  ( P  pCnt  P ) )
61 1z 10890 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
62 pcid 14480 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  1  e.  ZZ )  ->  ( P  pCnt  ( P ^
1 ) )  =  1 )
633, 61, 62sylancl 660 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P  pCnt  ( P ^ 1 ) )  =  1 )
6460, 63eqtr3d 2497 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  pCnt  P
)  =  1 )
6564negeqd 9805 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( P  pCnt  P )  =  -u 1
)
6665oveq2d 6286 . . . . . . . . . 10  |-  ( ph  ->  ( P ^ -u ( P  pCnt  P ) )  =  ( P ^ -u 1 ) )
67 neg1z 10896 . . . . . . . . . . . 12  |-  -u 1  e.  ZZ
6867a1i 11 . . . . . . . . . . 11  |-  ( ph  -> 
-u 1  e.  ZZ )
6958, 16, 68cxpexpzd 23260 . . . . . . . . . 10  |-  ( ph  ->  ( P  ^c  -u 1 )  =  ( P ^ -u 1
) )
7066, 69eqtr4d 2498 . . . . . . . . 9  |-  ( ph  ->  ( P ^ -u ( P  pCnt  P ) )  =  ( P  ^c  -u 1 ) )
7155, 57, 703eqtrd 2499 . . . . . . . 8  |-  ( ph  ->  ( ( J `  P ) `  P
)  =  ( P  ^c  -u 1
) )
7271oveq1d 6285 . . . . . . 7  |-  ( ph  ->  ( ( ( J `
 P ) `  P )  ^c  R )  =  ( ( P  ^c  -u 1 )  ^c  R ) )
7327recnd 9611 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  CC )
7473mulm1d 10004 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1  x.  R )  =  -u R )
751negeqi 9804 . . . . . . . . . . 11  |-  -u R  =  -u -u ( ( log `  ( F `  P
) )  /  ( log `  P ) )
7625recnd 9611 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( log `  ( F `  P )
)  /  ( log `  P ) )  e.  CC )
7776negnegd 9913 . . . . . . . . . . 11  |-  ( ph  -> 
-u -u ( ( log `  ( F `  P
) )  /  ( log `  P ) )  =  ( ( log `  ( F `  P
) )  /  ( log `  P ) ) )
7875, 77syl5eq 2507 . . . . . . . . . 10  |-  ( ph  -> 
-u R  =  ( ( log `  ( F `  P )
)  /  ( log `  P ) ) )
7974, 78eqtrd 2495 . . . . . . . . 9  |-  ( ph  ->  ( -u 1  x.  R )  =  ( ( log `  ( F `  P )
)  /  ( log `  P ) ) )
8079oveq2d 6286 . . . . . . . 8  |-  ( ph  ->  ( P  ^c 
( -u 1  x.  R
) )  =  ( P  ^c  ( ( log `  ( F `  P )
)  /  ( log `  P ) ) ) )
818nnrpd 11257 . . . . . . . . 9  |-  ( ph  ->  P  e.  RR+ )
82 neg1rr 10636 . . . . . . . . . 10  |-  -u 1  e.  RR
8382a1i 11 . . . . . . . . 9  |-  ( ph  -> 
-u 1  e.  RR )
8481, 83, 73cxpmuld 23283 . . . . . . . 8  |-  ( ph  ->  ( P  ^c 
( -u 1  x.  R
) )  =  ( ( P  ^c  -u 1 )  ^c  R ) )
8558, 16, 76cxpefd 23261 . . . . . . . . 9  |-  ( ph  ->  ( P  ^c 
( ( log `  ( F `  P )
)  /  ( log `  P ) ) )  =  ( exp `  (
( ( log `  ( F `  P )
)  /  ( log `  P ) )  x.  ( log `  P
) ) ) )
8621recnd 9611 . . . . . . . . . . 11  |-  ( ph  ->  ( log `  ( F `  P )
)  e.  CC )
8724rpne0d 11264 . . . . . . . . . . 11  |-  ( ph  ->  ( log `  P
)  =/=  0 )
8886, 35, 87divcan1d 10317 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( log `  ( F `  P
) )  /  ( log `  P ) )  x.  ( log `  P
) )  =  ( log `  ( F `
 P ) ) )
8988fveq2d 5852 . . . . . . . . 9  |-  ( ph  ->  ( exp `  (
( ( log `  ( F `  P )
)  /  ( log `  P ) )  x.  ( log `  P
) ) )  =  ( exp `  ( log `  ( F `  P ) ) ) )
9020reeflogd 23177 . . . . . . . . 9  |-  ( ph  ->  ( exp `  ( log `  ( F `  P ) ) )  =  ( F `  P ) )
9185, 89, 903eqtrd 2499 . . . . . . . 8  |-  ( ph  ->  ( P  ^c 
( ( log `  ( F `  P )
)  /  ( log `  P ) ) )  =  ( F `  P ) )
9280, 84, 913eqtr3d 2503 . . . . . . 7  |-  ( ph  ->  ( ( P  ^c  -u 1 )  ^c  R )  =  ( F `  P ) )
9353, 72, 923eqtrrd 2500 . . . . . 6  |-  ( ph  ->  ( F `  P
)  =  ( ( y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  R ) ) `  P
) )
94 fveq2 5848 . . . . . . 7  |-  ( P  =  p  ->  ( F `  P )  =  ( F `  p ) )
95 fveq2 5848 . . . . . . 7  |-  ( P  =  p  ->  (
( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  P )  =  ( ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p ) )
9694, 95eqeq12d 2476 . . . . . 6  |-  ( P  =  p  ->  (
( F `  P
)  =  ( ( y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  R ) ) `  P
)  <->  ( F `  p )  =  ( ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p ) ) )
9793, 96syl5ibcom 220 . . . . 5  |-  ( ph  ->  ( P  =  p  ->  ( F `  p )  =  ( ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p ) ) )
9897adantr 463 . . . 4  |-  ( (
ph  /\  p  e.  Prime )  ->  ( P  =  p  ->  ( F `
 p )  =  ( ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  R ) ) `  p ) ) )
99 prmnn 14304 . . . . . . . . 9  |-  ( p  e.  Prime  ->  p  e.  NN )
10099ad2antlr 724 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  p  e.  NN )
101 nnq 11196 . . . . . . . 8  |-  ( p  e.  NN  ->  p  e.  QQ )
102100, 101syl 16 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  p  e.  QQ )
103 fveq2 5848 . . . . . . . . 9  |-  ( y  =  p  ->  (
( J `  P
) `  y )  =  ( ( J `
 P ) `  p ) )
104103oveq1d 6285 . . . . . . . 8  |-  ( y  =  p  ->  (
( ( J `  P ) `  y
)  ^c  R )  =  ( ( ( J `  P
) `  p )  ^c  R )
)
105 ovex 6298 . . . . . . . 8  |-  ( ( ( J `  P
) `  p )  ^c  R )  e.  _V
106104, 50, 105fvmpt 5931 . . . . . . 7  |-  ( p  e.  QQ  ->  (
( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p )  =  ( ( ( J `  P ) `  p
)  ^c  R ) )
107102, 106syl 16 . . . . . 6  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p )  =  ( ( ( J `  P ) `  p
)  ^c  R ) )
10873ad2antrr 723 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  R  e.  CC )
1091081cxpd 23256 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
1  ^c  R )  =  1 )
1103ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  P  e.  Prime )
11145padicval 24000 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  p  e.  QQ )  ->  (
( J `  P
) `  p )  =  if ( p  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  p ) ) ) )
112110, 102, 111syl2anc 659 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( J `  P
) `  p )  =  if ( p  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  p ) ) ) )
113100nnne0d 10576 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  p  =/=  0 )
114113neneqd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  -.  p  =  0 )
115114iffalsed 3940 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  if ( p  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  p ) ) )  =  ( P ^ -u ( P 
pCnt  p ) ) )
116 pceq0 14478 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  p  e.  NN )  ->  (
( P  pCnt  p
)  =  0  <->  -.  P  ||  p ) )
1173, 99, 116syl2an 475 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  p  e.  Prime )  ->  ( ( P  pCnt  p )  =  0  <->  -.  P  ||  p
) )
118 dvdsprm 14324 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  p  e.  Prime )  ->  ( P  ||  p  <->  P  =  p ) )
1195, 118sylan 469 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  p  e.  Prime )  ->  ( P  ||  p  <->  P  =  p
) )
120119necon3bbid 2701 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  p  e.  Prime )  ->  ( -.  P  ||  p  <->  P  =/=  p ) )
121117, 120bitrd 253 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  p  e.  Prime )  ->  ( ( P  pCnt  p )  =  0  <->  P  =/=  p
) )
122121biimpar 483 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( P  pCnt  p )  =  0 )
123122negeqd 9805 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  -u ( P  pCnt  p )  = 
-u 0 )
124 neg0 9856 . . . . . . . . . . . 12  |-  -u 0  =  0
125123, 124syl6eq 2511 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  -u ( P  pCnt  p )  =  0 )
126125oveq2d 6286 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( P ^ -u ( P 
pCnt  p ) )  =  ( P ^ 0 ) )
12758ad2antrr 723 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  P  e.  CC )
128127exp0d 12286 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( P ^ 0 )  =  1 )
129126, 128eqtrd 2495 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( P ^ -u ( P 
pCnt  p ) )  =  1 )
130112, 115, 1293eqtrd 2499 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( J `  P
) `  p )  =  1 )
131130oveq1d 6285 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( ( J `  P ) `  p
)  ^c  R )  =  ( 1  ^c  R ) )
132 2re 10601 . . . . . . . . . . . . 13  |-  2  e.  RR
133132a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
2  e.  RR )
134 ostth3.6 . . . . . . . . . . . . . 14  |-  S  =  if ( ( F `
 P )  <_ 
( F `  p
) ,  ( F `
 p ) ,  ( F `  P
) )
1352ad2antrr 723 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  F  e.  A )
13611, 13abvcl 17668 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  A  /\  p  e.  QQ )  ->  ( F `  p
)  e.  RR )
137135, 102, 136syl2anc 659 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( F `  p )  e.  RR )
13811, 13, 17abvgt0 17672 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  A  /\  p  e.  QQ  /\  p  =/=  0 )  ->  0  <  ( F `  p
) )
139135, 102, 113, 138syl3anc 1226 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  0  <  ( F `  p
) )
140137, 139elrpd 11256 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( F `  p )  e.  RR+ )
141140adantrr 714 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( F `  p
)  e.  RR+ )
14220ad2antrr 723 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( F `  P
)  e.  RR+ )
143141, 142ifcld 3972 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  e.  RR+ )
144134, 143syl5eqel 2546 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  S  e.  RR+ )
145144rprecred 11270 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( 1  /  S
)  e.  RR )
146 simprr 755 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( F `  p
)  <  1 )
14728ad2antrr 723 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( F `  P
)  <  1 )
148 breq1 4442 . . . . . . . . . . . . . . . 16  |-  ( ( F `  p )  =  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  -> 
( ( F `  p )  <  1  <->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  <  1 ) )
149 breq1 4442 . . . . . . . . . . . . . . . 16  |-  ( ( F `  P )  =  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  -> 
( ( F `  P )  <  1  <->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  <  1 ) )
150148, 149ifboth 3965 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  p
)  <  1  /\  ( F `  P )  <  1 )  ->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  <  1 )
151146, 147, 150syl2anc 659 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  <  1 )
152134, 151syl5eqbr 4472 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  S  <  1 )
153144reclt1d 11272 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( S  <  1  <->  1  <  ( 1  /  S ) ) )
154152, 153mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
1  <  ( 1  /  S ) )
155 expnbnd 12277 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( 1  /  S
)  e.  RR  /\  1  <  ( 1  /  S ) )  ->  E. k  e.  NN  2  <  ( ( 1  /  S ) ^
k ) )
156133, 145, 154, 155syl3anc 1226 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  E. k  e.  NN  2  <  ( ( 1  /  S ) ^
k ) )
157144rpcnd 11261 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  S  e.  CC )
158157adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  S  e.  CC )
159144rpne0d 11264 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  S  =/=  0 )
160159adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  S  =/=  0 )
161 nnz 10882 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  k  e.  ZZ )
162161adantl 464 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  k  e.  ZZ )
163158, 160, 162exprecd 12300 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( 1  /  S
) ^ k )  =  ( 1  / 
( S ^ k
) ) )
1642ad3antrrr 727 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  F  e.  A )
165 ax-1ne0 9550 . . . . . . . . . . . . . . . . . 18  |-  1  =/=  0
16612qrng1 24005 . . . . . . . . . . . . . . . . . . 19  |-  1  =  ( 1r `  Q )
16711, 166, 17abv1z 17676 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  A  /\  1  =/=  0 )  -> 
( F `  1
)  =  1 )
168164, 165, 167sylancl 660 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( F `  1 )  =  1 )
1698ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  P  e.  NN )
170 nnnn0 10798 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  NN  ->  k  e.  NN0 )
171 nnexpcl 12161 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  NN  /\  k  e.  NN0 )  -> 
( P ^ k
)  e.  NN )
172169, 170, 171syl2an 475 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( P ^ k )  e.  NN )
173172nnzd 10964 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( P ^ k )  e.  ZZ )
17499ad2antlr 724 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  p  e.  NN )
175 nnexpcl 12161 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  NN  /\  k  e.  NN0 )  -> 
( p ^ k
)  e.  NN )
176174, 170, 175syl2an 475 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
p ^ k )  e.  NN )
177176nnzd 10964 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
p ^ k )  e.  ZZ )
178 bezout 14264 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P ^ k
)  e.  ZZ  /\  ( p ^ k
)  e.  ZZ )  ->  E. a  e.  ZZ  E. b  e.  ZZ  (
( P ^ k
)  gcd  ( p ^ k ) )  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) ) )
179173, 177, 178syl2anc 659 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( ( P ^ k )  gcd  ( p ^ k
) )  =  ( ( ( P ^
k )  x.  a
)  +  ( ( p ^ k )  x.  b ) ) )
180 simprl 754 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  P  =/=  p )
1813ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  P  e.  Prime )
182 simplr 753 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  p  e.  Prime )
183 prmrp 14326 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( P  e.  Prime  /\  p  e.  Prime )  ->  (
( P  gcd  p
)  =  1  <->  P  =/=  p ) )
184181, 182, 183syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( ( P  gcd  p )  =  1  <-> 
P  =/=  p ) )
185180, 184mpbird 232 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( P  gcd  p
)  =  1 )
186185adantr 463 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( P  gcd  p )  =  1 )
187169adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  P  e.  NN )
188174adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  p  e.  NN )
189 simpr 459 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  k  e.  NN )
190 rppwr 14279 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( P  e.  NN  /\  p  e.  NN  /\  k  e.  NN )  ->  (
( P  gcd  p
)  =  1  -> 
( ( P ^
k )  gcd  (
p ^ k ) )  =  1 ) )
191187, 188, 189, 190syl3anc 1226 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( P  gcd  p
)  =  1  -> 
( ( P ^
k )  gcd  (
p ^ k ) )  =  1 ) )
192186, 191mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( P ^ k
)  gcd  ( p ^ k ) )  =  1 )
193192adantrr 714 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( P ^ k
)  gcd  ( p ^ k ) )  =  1 )
194193eqeq1d 2456 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( P ^
k )  gcd  (
p ^ k ) )  =  ( ( ( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) )  <->  1  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) ) ) )
1952ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  F  e.  A )
196172adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( P ^ k )  e.  NN )
197 nnq 11196 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( P ^ k )  e.  NN  ->  ( P ^ k )  e.  QQ )
198196, 197syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( P ^ k )  e.  QQ )
199 simprrl 763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  a  e.  ZZ )
200 zq 11189 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( a  e.  ZZ  ->  a  e.  QQ )
201199, 200syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  a  e.  QQ )
202 qmulcl 11201 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( P ^ k
)  e.  QQ  /\  a  e.  QQ )  ->  ( ( P ^
k )  x.  a
)  e.  QQ )
203198, 201, 202syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( P ^ k
)  x.  a )  e.  QQ )
204176adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
p ^ k )  e.  NN )
205 nnq 11196 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( p ^ k )  e.  NN  ->  (
p ^ k )  e.  QQ )
206204, 205syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
p ^ k )  e.  QQ )
207 simprrr 764 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  b  e.  ZZ )
208 zq 11189 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( b  e.  ZZ  ->  b  e.  QQ )
209207, 208syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  b  e.  QQ )
210 qmulcl 11201 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( p ^ k
)  e.  QQ  /\  b  e.  QQ )  ->  ( ( p ^
k )  x.  b
)  e.  QQ )
211206, 209, 210syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( p ^ k
)  x.  b )  e.  QQ )
212 qaddcl 11199 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( P ^
k )  x.  a
)  e.  QQ  /\  ( ( p ^
k )  x.  b
)  e.  QQ )  ->  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) )  e.  QQ )
213203, 211, 212syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( P ^
k )  x.  a
)  +  ( ( p ^ k )  x.  b ) )  e.  QQ )
21411, 13abvcl 17668 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F  e.  A  /\  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) )  e.  QQ )  ->  ( F `  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) ) )  e.  RR )
215195, 213, 214syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) ) )  e.  RR )
21611, 13abvcl 17668 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F  e.  A  /\  ( ( P ^
k )  x.  a
)  e.  QQ )  ->  ( F `  ( ( P ^
k )  x.  a
) )  e.  RR )
217195, 203, 216syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( ( P ^ k )  x.  a ) )  e.  RR )
21811, 13abvcl 17668 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F  e.  A  /\  ( ( p ^
k )  x.  b
)  e.  QQ )  ->  ( F `  ( ( p ^
k )  x.  b
) )  e.  RR )
219195, 211, 218syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
p ^ k )  x.  b ) )  e.  RR )
220217, 219readdcld 9612 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  (
( P ^ k
)  x.  a ) )  +  ( F `
 ( ( p ^ k )  x.  b ) ) )  e.  RR )
221 rpexpcl 12167 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( S  e.  RR+  /\  k  e.  ZZ )  ->  ( S ^ k )  e.  RR+ )
222144, 161, 221syl2an 475 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( S ^ k )  e.  RR+ )
223222rpred 11259 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( S ^ k )  e.  RR )
224223adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( S ^ k )  e.  RR )
225 remulcl 9566 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 2  e.  RR  /\  ( S ^ k )  e.  RR )  -> 
( 2  x.  ( S ^ k ) )  e.  RR )
226132, 224, 225sylancr 661 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
2  x.  ( S ^ k ) )  e.  RR )
227 qex 11195 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  QQ  e.  _V
228 cnfldadd 18620 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  +  =  ( +g  ` fld )
22912, 228ressplusg 14830 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( QQ  e.  _V  ->  +  =  ( +g  `  Q
) )
230227, 229ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  +  =  ( +g  `  Q )
23111, 13, 230abvtri 17674 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F  e.  A  /\  ( ( P ^
k )  x.  a
)  e.  QQ  /\  ( ( p ^
k )  x.  b
)  e.  QQ )  ->  ( F `  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) ) )  <_  (
( F `  (
( P ^ k
)  x.  a ) )  +  ( F `
 ( ( p ^ k )  x.  b ) ) ) )
232195, 203, 211, 231syl3anc 1226 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) ) )  <_  ( ( F `
 ( ( P ^ k )  x.  a ) )  +  ( F `  (
( p ^ k
)  x.  b ) ) ) )
233 cnfldmul 18621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  x.  =  ( .r ` fld )
23412, 233ressmulr 14841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( QQ  e.  _V  ->  x.  =  ( .r `  Q ) )
235227, 234ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  x.  =  ( .r `  Q )
23611, 13, 235abvmul 17673 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F  e.  A  /\  ( P ^ k )  e.  QQ  /\  a  e.  QQ )  ->  ( F `  ( ( P ^ k )  x.  a ) )  =  ( ( F `  ( P ^ k ) )  x.  ( F `
 a ) ) )
237195, 198, 201, 236syl3anc 1226 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( ( P ^ k )  x.  a ) )  =  ( ( F `  ( P ^ k ) )  x.  ( F `
 a ) ) )
23810ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  P  e.  QQ )
239170ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  k  e.  NN0 )
24012, 11qabvexp 24009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F  e.  A  /\  P  e.  QQ  /\  k  e.  NN0 )  ->  ( F `  ( P ^ k ) )  =  ( ( F `
 P ) ^
k ) )
241195, 238, 239, 240syl3anc 1226 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( P ^ k ) )  =  ( ( F `
 P ) ^
k ) )
242241oveq1d 6285 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  ( P ^ k ) )  x.  ( F `  a ) )  =  ( ( ( F `
 P ) ^
k )  x.  ( F `  a )
) )
243237, 242eqtrd 2495 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( ( P ^ k )  x.  a ) )  =  ( ( ( F `
 P ) ^
k )  x.  ( F `  a )
) )
244195, 238, 14syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  P )  e.  RR )
245244, 239reexpcld 12309 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  P
) ^ k )  e.  RR )
24611, 13abvcl 17668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F  e.  A  /\  a  e.  QQ )  ->  ( F `  a
)  e.  RR )
247195, 201, 246syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  a )  e.  RR )
248245, 247remulcld 9613 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  P ) ^ k
)  x.  ( F `
 a ) )  e.  RR )
249 elz 10862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( a  e.  ZZ  <->  ( a  e.  RR  /\  ( a  =  0  \/  a  e.  NN  \/  -u a  e.  NN ) ) )
250249simprbi 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( a  e.  ZZ  ->  (
a  =  0  \/  a  e.  NN  \/  -u a  e.  NN ) )
251250adantl 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( a  =  0  \/  a  e.  NN  \/  -u a  e.  NN ) )
25211, 17abv0 17675 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( F  e.  A  ->  ( F `  0 )  =  0 )
2532, 252syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ph  ->  ( F `  0
)  =  0 )
254 0le1 10072 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  0  <_  1
255253, 254syl6eqbr 4476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ph  ->  ( F `  0
)  <_  1 )
256255adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( F `
 0 )  <_ 
1 )
257 fveq2 5848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( a  =  0  ->  ( F `  a )  =  ( F ` 
0 ) )
258257breq1d 4449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( a  =  0  ->  (
( F `  a
)  <_  1  <->  ( F `  0 )  <_ 
1 ) )
259256, 258syl5ibrcom 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( a  =  0  ->  ( F `  a )  <_  1 ) )
260 ostth3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ph  ->  A. n  e.  NN  -.  1  <  ( F `
 n ) )
261 nnq 11196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( n  e.  NN  ->  n  e.  QQ )
26211, 13abvcl 17668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( F  e.  A  /\  n  e.  QQ )  ->  ( F `  n
)  e.  RR )
2632, 261, 262syl2an 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e.  RR )
264 1re 9584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  1  e.  RR
265 lenlt 9652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( ( F `  n
)  e.  RR  /\  1  e.  RR )  ->  ( ( F `  n )  <_  1  <->  -.  1  <  ( F `
 n ) ) )
266263, 264, 265sylancl 660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  <_  1  <->  -.  1  <  ( F `  n
) ) )
267266ralbidva 2890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ph  ->  ( A. n  e.  NN  ( F `  n )  <_  1  <->  A. n  e.  NN  -.  1  <  ( F `  n ) ) )
268260, 267mpbird 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ph  ->  A. n  e.  NN  ( F `  n )  <_  1 )
269 fveq2 5848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( n  =  a  ->  ( F `  n )  =  ( F `  a ) )
270269breq1d 4449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( n  =  a  ->  (
( F `  n
)  <_  1  <->  ( F `  a )  <_  1
) )
271270rspccv 3204 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( A. n  e.  NN  ( F `  n )  <_  1  ->  ( a  e.  NN  ->  ( F `  a )  <_  1
) )
272268, 271syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ph  ->  ( a  e.  NN  ->  ( F `  a
)  <_  1 ) )
273272adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( a  e.  NN  ->  ( F `  a )  <_  1 ) )
2742adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  ->  F  e.  A )
275200ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
a  e.  QQ )
276 eqid 2454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( invg `  Q )  =  ( invg `  Q )
27711, 13, 276abvneg 17678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( F  e.  A  /\  a  e.  QQ )  ->  ( F `  (
( invg `  Q ) `  a
) )  =  ( F `  a ) )
278274, 275, 277syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
( F `  (
( invg `  Q ) `  a
) )  =  ( F `  a ) )
27912qrngneg 24006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( a  e.  QQ  ->  (
( invg `  Q ) `  a
)  =  -u a
)
280275, 279syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
( ( invg `  Q ) `  a
)  =  -u a
)
281 simprr 755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  ->  -u a  e.  NN )
282280, 281eqeltrd 2542 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
( ( invg `  Q ) `  a
)  e.  NN )
283268adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  ->  A. n  e.  NN  ( F `  n )  <_  1 )
284 fveq2 5848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( n  =  ( ( invg `  Q ) `
 a )  -> 
( F `  n
)  =  ( F `
 ( ( invg `  Q ) `
 a ) ) )
285284breq1d 4449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( n  =  ( ( invg `  Q ) `
 a )  -> 
( ( F `  n )  <_  1  <->  ( F `  ( ( invg `  Q
) `  a )
)  <_  1 ) )
286285rspcv 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( invg `  Q ) `  a
)  e.  NN  ->  ( A. n  e.  NN  ( F `  n )  <_  1  ->  ( F `  ( ( invg `  Q ) `
 a ) )  <_  1 ) )
287282, 283, 286sylc 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
( F `  (
( invg `  Q ) `  a
) )  <_  1
)
288278, 287eqbrtrrd 4461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
( F `  a
)  <_  1 )
289288expr 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( -u a  e.  NN  ->  ( F `  a )  <_  1 ) )
290259, 273, 2893jaod 1290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( ( a  =  0  \/  a  e.  NN  \/  -u a  e.  NN )  ->  ( F `  a )  <_  1
) )
291251, 290mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( F `
 a )  <_ 
1 )
292291ralrimiva 2868 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ph  ->  A. a  e.  ZZ  ( F `  a )  <_  1 )
293292ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  A. a  e.  ZZ  ( F `  a )  <_  1
)
294 rsp 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( A. a  e.  ZZ  ( F `  a )  <_  1  ->  ( a  e.  ZZ  ->  ( F `  a )  <_  1
) )
295293, 199, 294sylc 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  a )  <_  1 )
296264a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  1  e.  RR )
297161ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  k  e.  ZZ )
29819ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <  ( F `  P
) )
299 expgt0 12181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( F `  P
)  e.  RR  /\  k  e.  ZZ  /\  0  <  ( F `  P
) )  ->  0  <  ( ( F `  P ) ^ k
) )
300244, 297, 298, 299syl3anc 1226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <  ( ( F `  P ) ^ k
) )
301 lemul2 10391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F `  a
)  e.  RR  /\  1  e.  RR  /\  (
( ( F `  P ) ^ k
)  e.  RR  /\  0  <  ( ( F `
 P ) ^
k ) ) )  ->  ( ( F `
 a )  <_ 
1  <->  ( ( ( F `  P ) ^ k )  x.  ( F `  a
) )  <_  (
( ( F `  P ) ^ k
)  x.  1 ) ) )
302247, 296, 245, 300, 301syl112anc 1230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  a
)  <_  1  <->  ( (
( F `  P
) ^ k )  x.  ( F `  a ) )  <_ 
( ( ( F `
 P ) ^
k )  x.  1 ) ) )
303295, 302mpbid 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  P ) ^ k
)  x.  ( F `
 a ) )  <_  ( ( ( F `  P ) ^ k )  x.  1 ) )
304245recnd 9611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  P
) ^ k )  e.  CC )
305304mulid1d 9602 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  P ) ^ k
)  x.  1 )  =  ( ( F `
 P ) ^
k ) )
306303, 305breqtrd 4463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  P ) ^ k
)  x.  ( F `
 a ) )  <_  ( ( F `
 P ) ^
k ) )
307144rpred 11259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  S  e.  RR )
308307adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  S  e.  RR )
309142adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  P )  e.  RR+ )
310309rpge0d 11263 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <_  ( F `  P
) )
311174adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  p  e.  NN )
312311, 101syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  p  e.  QQ )
313195, 312, 136syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  p )  e.  RR )
314 max1 11389 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F `  P
)  e.  RR  /\  ( F `  p )  e.  RR )  -> 
( F `  P
)  <_  if (
( F `  P
)  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) ) )
315244, 313, 314syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  P )  <_  if ( ( F `
 P )  <_ 
( F `  p
) ,  ( F `
 p ) ,  ( F `  P
) ) )
316315, 134syl6breqr 4479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  P )  <_  S )
317 leexp1a 12206 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( F `  P )  e.  RR  /\  S  e.  RR  /\  k  e.  NN0 )  /\  ( 0  <_  ( F `  P )  /\  ( F `  P
)  <_  S )
)  ->  ( ( F `  P ) ^ k )  <_ 
( S ^ k
) )
318244, 308, 239, 310, 316, 317syl32anc 1234 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  P
) ^ k )  <_  ( S ^
k ) )
319248, 245, 224, 306, 318letrd 9728 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  P ) ^ k
)  x.  ( F `
 a ) )  <_  ( S ^
k ) )
320243, 319eqbrtrd 4459 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( ( P ^ k )  x.  a ) )  <_ 
( S ^ k
) )
32111, 13, 235abvmul 17673 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F  e.  A  /\  ( p ^ k
)  e.  QQ  /\  b  e.  QQ )  ->  ( F `  (
( p ^ k
)  x.  b ) )  =  ( ( F `  ( p ^ k ) )  x.  ( F `  b ) ) )
322195, 206, 209, 321syl3anc 1226 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
p ^ k )  x.  b ) )  =  ( ( F `
 ( p ^
k ) )  x.  ( F `  b
) ) )
32312, 11qabvexp 24009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F  e.  A  /\  p  e.  QQ  /\  k  e.  NN0 )  ->  ( F `  ( p ^ k ) )  =  ( ( F `
 p ) ^
k ) )
324195, 312, 239, 323syl3anc 1226 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( p ^ k ) )  =  ( ( F `
 p ) ^
k ) )
325324oveq1d 6285 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  (
p ^ k ) )  x.  ( F `
 b ) )  =  ( ( ( F `  p ) ^ k )  x.  ( F `  b
) ) )
326322, 325eqtrd 2495 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
p ^ k )  x.  b ) )  =  ( ( ( F `  p ) ^ k )  x.  ( F `  b
) ) )
327313, 239reexpcld 12309 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  p
) ^ k )  e.  RR )
32811, 13abvcl 17668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F  e.  A  /\  b  e.  QQ )  ->  ( F `  b
)  e.  RR )
329195, 209, 328syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  b )  e.  RR )
330327, 329remulcld 9613 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  p ) ^ k
)  x.  ( F `
 b ) )  e.  RR )
331 fveq2 5848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( a  =  b  ->  ( F `  a )  =  ( F `  b ) )
332331breq1d 4449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( a  =  b  ->  (
( F `  a
)  <_  1  <->  ( F `  b )  <_  1
) )
333332rspcv 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( b  e.  ZZ  ->  ( A. a  e.  ZZ  ( F `  a )  <_  1  ->  ( F `  b )  <_  1 ) )
334207, 293, 333sylc 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  b )  <_  1 )
335311nnne0d 10576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  p  =/=  0 )
336195, 312, 335, 138syl3anc 1226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <  ( F `  p
) )
337 expgt0 12181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( F `  p
)  e.  RR  /\  k  e.  ZZ  /\  0  <  ( F `  p
) )  ->  0  <  ( ( F `  p ) ^ k
) )
338313, 297, 336, 337syl3anc 1226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <  ( ( F `  p ) ^ k
) )
339 lemul2 10391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F `  b
)  e.  RR  /\  1  e.  RR  /\  (
( ( F `  p ) ^ k
)  e.  RR  /\  0  <  ( ( F `
 p ) ^
k ) ) )  ->  ( ( F `
 b )  <_ 
1  <->  ( ( ( F `  p ) ^ k )  x.  ( F `  b
) )  <_  (
( ( F `  p ) ^ k
)  x.  1 ) ) )
340329, 296, 327, 338, 339syl112anc 1230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  b
)  <_  1  <->  ( (
( F `  p
) ^ k )  x.  ( F `  b ) )  <_ 
( ( ( F `
 p ) ^
k )  x.  1 ) ) )
341334, 340mpbid 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  p ) ^ k
)  x.  ( F `
 b ) )  <_  ( ( ( F `  p ) ^ k )  x.  1 ) )
342327recnd 9611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  p
) ^ k )  e.  CC )
343342mulid1d 9602 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  p ) ^ k
)  x.  1 )  =  ( ( F `
 p ) ^
k ) )
344341, 343breqtrd 4463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  p ) ^ k
)  x.  ( F `
 b ) )  <_  ( ( F `
 p ) ^
k ) )
345141adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  p )  e.  RR+ )
346345rpge0d 11263 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <_  ( F `  p
) )
347 max2 11391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F `  P
)  e.  RR  /\  ( F `  p )  e.  RR )  -> 
( F `  p
)  <_  if (
( F `  P
)  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) ) )
348244, 313, 347syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  p )  <_  if ( ( F `
 P )  <_ 
( F `  p
) ,  ( F `
 p ) ,  ( F `  P
) ) )
349348, 134syl6breqr 4479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  p )  <_  S )
350 leexp1a 12206 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( F `  p )  e.  RR  /\  S  e.  RR  /\  k  e.  NN0 )  /\  ( 0  <_  ( F `  p )  /\  ( F `  p
)  <_  S )
)  ->  ( ( F `  p ) ^ k )  <_ 
( S ^ k
) )
351313, 308, 239, 346, 349, 350syl32anc 1234 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  p
) ^ k )  <_  ( S ^
k ) )
352330, 327, 224, 344, 351letrd 9728 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  p ) ^ k
)  x.  ( F `
 b ) )  <_  ( S ^
k ) )
353326, 352eqbrtrd 4459 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
p ^ k )  x.  b ) )  <_  ( S ^
k ) )
354217, 219, 224, 224, 320, 353le2addd 10166 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  (
( P ^ k
)  x.  a ) )  +  ( F `
 ( ( p ^ k )  x.  b ) ) )  <_  ( ( S ^ k )  +  ( S ^ k
) ) )
355222rpcnd 11261 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( S ^ k )  e.  CC )
3563552timesd 10777 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
2  x.  ( S ^ k ) )  =  ( ( S ^ k )  +  ( S ^ k
) ) )
357356adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
2  x.  ( S ^ k ) )  =  ( ( S ^ k )  +  ( S ^ k
) ) )
358354, 357breqtrrd 4465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  (
( P ^ k
)  x.  a ) )  +  ( F `
 ( ( p ^ k )  x.  b ) ) )  <_  ( 2  x.  ( S ^ k
) ) )
359215, 220, 226, 232, 358letrd 9728 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) ) )  <_  ( 2  x.  ( S ^ k
) ) )
360 fveq2 5848 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) )  ->  ( F `  1 )  =  ( F `  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) ) ) )
361360breq1d 4449 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) )  ->  (
( F `  1
)  <_  ( 2  x.  ( S ^
k ) )  <->  ( F `  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) ) )  <_  (
2  x.  ( S ^ k ) ) ) )
362359, 361syl5ibrcom 222 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
1  =  ( ( ( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) )  -> 
( F `  1
)  <_  ( 2  x.  ( S ^
k ) ) ) )
363194, 362sylbid 215 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( P ^
k )  gcd  (
p ^ k ) )  =  ( ( ( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) )  -> 
( F `  1
)  <_  ( 2  x.  ( S ^
k ) ) ) )
364363anassrs 646 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( (
( P ^ k
)  gcd  ( p ^ k ) )  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) )  ->  ( F `  1 )  <_  ( 2  x.  ( S ^ k ) ) ) )
365364rexlimdvva 2953 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( P ^ k
)  gcd  ( p ^ k ) )  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) )  ->  ( F `  1 )  <_  ( 2  x.  ( S ^ k ) ) ) )
366179, 365mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( F `  1 )  <_  ( 2  x.  ( S ^ k ) ) )
367168, 366eqbrtrrd 4461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  1  <_  ( 2  x.  ( S ^ k ) ) )
368222rpregt0d 11265 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( S ^ k
)  e.  RR  /\  0  <  ( S ^
k ) ) )
369 ledivmul2 10417 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  2  e.  RR  /\  (
( S ^ k
)  e.  RR  /\  0  <  ( S ^
k ) ) )  ->  ( ( 1  /  ( S ^
k ) )  <_ 
2  <->  1  <_  (
2  x.  ( S ^ k ) ) ) )
370264, 132, 369mp3an12 1312 . . . . . . . . . . . . . . . . 17  |-  ( ( ( S ^ k
)  e.  RR  /\  0  <  ( S ^
k ) )  -> 
( ( 1  / 
( S ^ k
) )  <_  2  <->  1  <_  ( 2  x.  ( S ^ k
) ) ) )
371368, 370syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( 1  /  ( S ^ k ) )  <_  2  <->  1  <_  ( 2  x.  ( S ^ k ) ) ) )
372367, 371mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
1  /  ( S ^ k ) )  <_  2 )
373163, 372eqbrtrd 4459 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( 1  /  S
) ^ k )  <_  2 )
374 reexpcl 12165 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  /  S
)  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  /  S ) ^ k
)  e.  RR )
375145, 170, 374syl2an 475 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( 1  /  S
) ^ k )  e.  RR )
376 lenlt 9652 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 1  /  S ) ^ k
)  e.  RR  /\  2  e.  RR )  ->  ( ( ( 1  /  S ) ^
k )  <_  2  <->  -.  2  <  ( ( 1  /  S ) ^ k ) ) )
377375, 132, 376sylancl 660 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( ( 1  /  S ) ^ k
)  <_  2  <->  -.  2  <  ( ( 1  /  S ) ^ k
) ) )
378373, 377mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  -.  2  <  ( ( 1  /  S ) ^
k ) )
379378pm2.21d 106 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
2  <  ( (
1  /  S ) ^ k )  ->  -.  ( F `  p
)  <  1 ) )
380379rexlimdva 2946 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( E. k  e.  NN  2  <  (
( 1  /  S
) ^ k )  ->  -.  ( F `  p )  <  1
) )
381156, 380mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  -.  ( F `  p
)  <  1 )
382381expr 613 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( F `  p
)  <  1  ->  -.  ( F `  p
)  <  1 ) )
383382pm2.01d 169 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  -.  ( F `  p )  <  1 )
384260ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  A. n  e.  NN  -.  1  < 
( F `  n
) )
385 fveq2 5848 . . . . . . . . . . . 12  |-  ( n  =  p  ->  ( F `  n )  =  ( F `  p ) )
386385breq2d 4451 . . . . . . . . . . 11  |-  ( n  =  p  ->  (
1  <  ( F `  n )  <->  1  <  ( F `  p ) ) )
387386notbid 292 . . . . . . . . . 10  |-  ( n  =  p  ->  ( -.  1  <  ( F `
 n )  <->  -.  1  <  ( F `  p
) ) )
388387rspcv 3203 . . . . . . . . 9  |-  ( p  e.  NN  ->  ( A. n  e.  NN  -.  1  <  ( F `
 n )  ->  -.  1  <  ( F `
 p ) ) )
389100, 384, 388sylc 60 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  -.  1  <  ( F `  p ) )
390 lttri3 9657 . . . . . . . . 9  |-  ( ( ( F `  p
)  e.  RR  /\  1  e.  RR )  ->  ( ( F `  p )  =  1  <-> 
( -.  ( F `
 p )  <  1  /\  -.  1  <  ( F `  p
) ) ) )
391137, 264, 390sylancl 660 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( F `  p
)  =  1  <->  ( -.  ( F `  p
)  <  1  /\  -.  1  <  ( F `
 p ) ) ) )
392383, 389, 391mpbir2and 920 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( F `  p )  =  1 )
393109, 131, 3923eqtr4d 2505 . . . . . 6  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( ( J `  P ) `  p
)  ^c  R )  =  ( F `
 p ) )
394107, 393eqtr2d 2496 . . . . 5  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( F `  p )  =  ( ( y  e.  QQ  |->  ( ( ( J `  P
) `  y )  ^c  R )
) `  p )
)
395394ex 432 . . . 4  |-  ( (
ph  /\  p  e.  Prime )  ->  ( P  =/=  p  ->  ( F `  p )  =  ( ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p ) ) )
39698, 395pm2.61dne 2771 . . 3  |-  ( (
ph  /\  p  e.  Prime )  ->  ( F `  p )  =  ( ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p ) )
39712, 11, 2, 47, 396ostthlem2 24011 . 2  |-  ( ph  ->  F  =  ( y  e.  QQ  |->  ( ( ( J `  P
) `  y )  ^c  R )
) )
398 oveq2 6278 . . . . 5  |-  ( a  =  R  ->  (
( ( J `  P ) `  y
)  ^c  a )  =  ( ( ( J `  P
) `  y )  ^c  R )
)
399398mpteq2dv 4526 . . . 4  |-  ( a  =  R  ->  (
y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  a ) )  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  R ) ) )
400399eqeq2d 2468 . . 3  |-  ( a  =  R  ->  ( F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  a ) )  <-> 
F  =  ( y  e.  QQ  |->  ( ( ( J `  P
) `  y )  ^c  R )
) ) )
401400rspcev 3207 . 2  |-  ( ( R  e.  RR+  /\  F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  R ) ) )  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  a ) ) )
40244, 397, 401syl2anc 659 1  |-  ( ph  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  a ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    \/ w3o 970    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   _Vcvv 3106   ifcif 3929   class class class wbr 4439    |-> cmpt 4497   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486    < clt 9617    <_ cle 9618   -ucneg 9797    / cdiv 10202   NNcn 10531   2c2 10581   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11082   QQcq 11183   RR+crp 11221   ^cexp 12148   expce 13879    || cdvds 14070    gcd cgcd 14228   Primecprime 14301    pCnt cpc 14444   ↾s cress 14717   +g cplusg 14784   .rcmulr 14785   invgcminusg 16253  AbsValcabv 17660  ℂfldccnfld 18615   logclog 23108    ^c ccxp 23109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-tpos 6947  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ioc 11537  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-mod 11979  df-seq 12090  df-exp 12149  df-fac 12336  df-bc 12363  df-hash 12388  df-shft 12982  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-limsup 13376  df-clim 13393  df-rlim 13394  df-sum 13591  df-ef 13885  df-sin 13887  df-cos 13888  df-pi 13890  df-dvds 14071  df-gcd 14229  df-prm 14302  df-pc 14445  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-hom 14808  df-cco 14809  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-pt 14934  df-prds 14937  df-xrs 14991  df-qtop 14996  df-imas 14997  df-xps 14999  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-grp 16256  df-minusg 16257  df-mulg 16259  df-subg 16397  df-cntz 16554  df-cmn 16999  df-mgp 17337  df-ur 17349  df-ring 17395  df-cring 17396  df-oppr 17467  df-dvdsr 17485  df-unit 17486  df-invr 17516  df-dvr 17527  df-drng 17593  df-subrg 17622  df-abv 17661  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-fbas 18611  df-fg 18612  df-cnfld 18616  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cld 19687  df-ntr 19688  df-cls 19689  df-nei 19766  df-lp 19804  df-perf 19805  df-cn 19895  df-cnp 19896  df-haus 19983  df-tx 20229  df-hmeo 20422  df-fil 20513  df-fm 20605  df-flim 20606  df-flf 20607  df-xms 20989  df-ms 20990  df-tms 20991  df-cncf 21548  df-limc 22436  df-dv 22437  df-log 23110  df-cxp 23111
This theorem is referenced by:  ostth  24022
  Copyright terms: Public domain W3C validator