MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth3 Structured version   Unicode version

Theorem ostth3 22909
Description: - Lemma for ostth 22910: p-adic case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
ostth.k  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
ostth.1  |-  ( ph  ->  F  e.  A )
ostth3.2  |-  ( ph  ->  A. n  e.  NN  -.  1  <  ( F `
 n ) )
ostth3.3  |-  ( ph  ->  P  e.  Prime )
ostth3.4  |-  ( ph  ->  ( F `  P
)  <  1 )
ostth3.5  |-  R  = 
-u ( ( log `  ( F `  P
) )  /  ( log `  P ) )
ostth3.6  |-  S  =  if ( ( F `
 P )  <_ 
( F `  p
) ,  ( F `
 p ) ,  ( F `  P
) )
Assertion
Ref Expression
ostth3  |-  ( ph  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  a ) ) )
Distinct variable groups:    n, p, y    n, K    x, n, a, p, q, y, ph    J, a, p, y    S, a    A, a, n, p, q, x, y    Q, n, x, y    F, a, n, p, q, y    P, a, p, q, x, y    R, a, p, q, y    x, F
Allowed substitution hints:    P( n)    Q( q, p, a)    R( x, n)    S( x, y, n, q, p)    J( x, n, q)    K( x, y, q, p, a)

Proof of Theorem ostth3
Dummy variables  k 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ostth3.5 . . . 4  |-  R  = 
-u ( ( log `  ( F `  P
) )  /  ( log `  P ) )
2 ostth.1 . . . . . . . . 9  |-  ( ph  ->  F  e.  A )
3 ostth3.3 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  Prime )
4 prmuz2 13802 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
53, 4syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
6 eluz2b2 10948 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
75, 6sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  ( P  e.  NN  /\  1  <  P ) )
87simpld 459 . . . . . . . . . 10  |-  ( ph  ->  P  e.  NN )
9 nnq 10987 . . . . . . . . . 10  |-  ( P  e.  NN  ->  P  e.  QQ )
108, 9syl 16 . . . . . . . . 9  |-  ( ph  ->  P  e.  QQ )
11 qabsabv.a . . . . . . . . . 10  |-  A  =  (AbsVal `  Q )
12 qrng.q . . . . . . . . . . 11  |-  Q  =  (flds  QQ )
1312qrngbas 22890 . . . . . . . . . 10  |-  QQ  =  ( Base `  Q )
1411, 13abvcl 16931 . . . . . . . . 9  |-  ( ( F  e.  A  /\  P  e.  QQ )  ->  ( F `  P
)  e.  RR )
152, 10, 14syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( F `  P
)  e.  RR )
168nnne0d 10387 . . . . . . . . 9  |-  ( ph  ->  P  =/=  0 )
1712qrng0 22892 . . . . . . . . . 10  |-  0  =  ( 0g `  Q )
1811, 13, 17abvgt0 16935 . . . . . . . . 9  |-  ( ( F  e.  A  /\  P  e.  QQ  /\  P  =/=  0 )  ->  0  <  ( F `  P
) )
192, 10, 16, 18syl3anc 1218 . . . . . . . 8  |-  ( ph  ->  0  <  ( F `
 P ) )
2015, 19elrpd 11046 . . . . . . 7  |-  ( ph  ->  ( F `  P
)  e.  RR+ )
2120relogcld 22094 . . . . . 6  |-  ( ph  ->  ( log `  ( F `  P )
)  e.  RR )
228nnred 10358 . . . . . . 7  |-  ( ph  ->  P  e.  RR )
237simprd 463 . . . . . . 7  |-  ( ph  ->  1  <  P )
2422, 23rplogcld 22100 . . . . . 6  |-  ( ph  ->  ( log `  P
)  e.  RR+ )
2521, 24rerpdivcld 11075 . . . . 5  |-  ( ph  ->  ( ( log `  ( F `  P )
)  /  ( log `  P ) )  e.  RR )
2625renegcld 9796 . . . 4  |-  ( ph  -> 
-u ( ( log `  ( F `  P
) )  /  ( log `  P ) )  e.  RR )
271, 26syl5eqel 2527 . . 3  |-  ( ph  ->  R  e.  RR )
28 ostth3.4 . . . . . . . . 9  |-  ( ph  ->  ( F `  P
)  <  1 )
29 1rp 11016 . . . . . . . . . 10  |-  1  e.  RR+
30 logltb 22070 . . . . . . . . . 10  |-  ( ( ( F `  P
)  e.  RR+  /\  1  e.  RR+ )  ->  (
( F `  P
)  <  1  <->  ( log `  ( F `  P
) )  <  ( log `  1 ) ) )
3120, 29, 30sylancl 662 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  P )  <  1  <->  ( log `  ( F `
 P ) )  <  ( log `  1
) ) )
3228, 31mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( log `  ( F `  P )
)  <  ( log `  1 ) )
33 log1 22056 . . . . . . . 8  |-  ( log `  1 )  =  0
3432, 33syl6breq 4352 . . . . . . 7  |-  ( ph  ->  ( log `  ( F `  P )
)  <  0 )
3524rpcnd 11050 . . . . . . . 8  |-  ( ph  ->  ( log `  P
)  e.  CC )
3635mul01d 9589 . . . . . . 7  |-  ( ph  ->  ( ( log `  P
)  x.  0 )  =  0 )
3734, 36breqtrrd 4339 . . . . . 6  |-  ( ph  ->  ( log `  ( F `  P )
)  <  ( ( log `  P )  x.  0 ) )
38 0red 9408 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
3921, 38, 24ltdivmuld 11095 . . . . . 6  |-  ( ph  ->  ( ( ( log `  ( F `  P
) )  /  ( log `  P ) )  <  0  <->  ( log `  ( F `  P
) )  <  (
( log `  P
)  x.  0 ) ) )
4037, 39mpbird 232 . . . . 5  |-  ( ph  ->  ( ( log `  ( F `  P )
)  /  ( log `  P ) )  <  0 )
4125lt0neg1d 9930 . . . . 5  |-  ( ph  ->  ( ( ( log `  ( F `  P
) )  /  ( log `  P ) )  <  0  <->  0  <  -u ( ( log `  ( F `  P )
)  /  ( log `  P ) ) ) )
4240, 41mpbid 210 . . . 4  |-  ( ph  ->  0  <  -u (
( log `  ( F `  P )
)  /  ( log `  P ) ) )
4342, 1syl6breqr 4353 . . 3  |-  ( ph  ->  0  <  R )
4427, 43elrpd 11046 . 2  |-  ( ph  ->  R  e.  RR+ )
45 padic.j . . . . 5  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
4612, 11, 45padicabvcxp 22903 . . . 4  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  (
y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  R ) )  e.  A
)
473, 44, 46syl2anc 661 . . 3  |-  ( ph  ->  ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) )  e.  A )
48 fveq2 5712 . . . . . . . . . 10  |-  ( y  =  P  ->  (
( J `  P
) `  y )  =  ( ( J `
 P ) `  P ) )
4948oveq1d 6127 . . . . . . . . 9  |-  ( y  =  P  ->  (
( ( J `  P ) `  y
)  ^c  R )  =  ( ( ( J `  P
) `  P )  ^c  R )
)
50 eqid 2443 . . . . . . . . 9  |-  ( y  e.  QQ  |->  ( ( ( J `  P
) `  y )  ^c  R )
)  =  ( y  e.  QQ  |->  ( ( ( J `  P
) `  y )  ^c  R )
)
51 ovex 6137 . . . . . . . . 9  |-  ( ( ( J `  P
) `  P )  ^c  R )  e.  _V
5249, 50, 51fvmpt 5795 . . . . . . . 8  |-  ( P  e.  QQ  ->  (
( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  P )  =  ( ( ( J `  P ) `  P
)  ^c  R ) )
5310, 52syl 16 . . . . . . 7  |-  ( ph  ->  ( ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  R ) ) `  P )  =  ( ( ( J `  P ) `  P
)  ^c  R ) )
5445padicval 22888 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  P  e.  QQ )  ->  (
( J `  P
) `  P )  =  if ( P  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  P ) ) ) )
553, 10, 54syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( J `  P ) `  P
)  =  if ( P  =  0 ,  0 ,  ( P ^ -u ( P 
pCnt  P ) ) ) )
5616neneqd 2627 . . . . . . . . . 10  |-  ( ph  ->  -.  P  =  0 )
57 iffalse 3820 . . . . . . . . . 10  |-  ( -.  P  =  0  ->  if ( P  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  P ) ) )  =  ( P ^ -u ( P 
pCnt  P ) ) )
5856, 57syl 16 . . . . . . . . 9  |-  ( ph  ->  if ( P  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  P ) ) )  =  ( P ^ -u ( P 
pCnt  P ) ) )
598nncnd 10359 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  CC )
6059exp1d 12024 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P ^ 1 )  =  P )
6160oveq2d 6128 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P  pCnt  ( P ^ 1 ) )  =  ( P  pCnt  P ) )
62 1z 10697 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
63 pcid 13960 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  1  e.  ZZ )  ->  ( P  pCnt  ( P ^
1 ) )  =  1 )
643, 62, 63sylancl 662 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P  pCnt  ( P ^ 1 ) )  =  1 )
6561, 64eqtr3d 2477 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  pCnt  P
)  =  1 )
6665negeqd 9625 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( P  pCnt  P )  =  -u 1
)
6766oveq2d 6128 . . . . . . . . . 10  |-  ( ph  ->  ( P ^ -u ( P  pCnt  P ) )  =  ( P ^ -u 1 ) )
68 neg1z 10702 . . . . . . . . . . . 12  |-  -u 1  e.  ZZ
6968a1i 11 . . . . . . . . . . 11  |-  ( ph  -> 
-u 1  e.  ZZ )
7059, 16, 69cxpexpzd 22178 . . . . . . . . . 10  |-  ( ph  ->  ( P  ^c  -u 1 )  =  ( P ^ -u 1
) )
7167, 70eqtr4d 2478 . . . . . . . . 9  |-  ( ph  ->  ( P ^ -u ( P  pCnt  P ) )  =  ( P  ^c  -u 1 ) )
7255, 58, 713eqtrd 2479 . . . . . . . 8  |-  ( ph  ->  ( ( J `  P ) `  P
)  =  ( P  ^c  -u 1
) )
7372oveq1d 6127 . . . . . . 7  |-  ( ph  ->  ( ( ( J `
 P ) `  P )  ^c  R )  =  ( ( P  ^c  -u 1 )  ^c  R ) )
7427recnd 9433 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  CC )
7574mulm1d 9817 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1  x.  R )  =  -u R )
761negeqi 9624 . . . . . . . . . . 11  |-  -u R  =  -u -u ( ( log `  ( F `  P
) )  /  ( log `  P ) )
7725recnd 9433 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( log `  ( F `  P )
)  /  ( log `  P ) )  e.  CC )
7877negnegd 9731 . . . . . . . . . . 11  |-  ( ph  -> 
-u -u ( ( log `  ( F `  P
) )  /  ( log `  P ) )  =  ( ( log `  ( F `  P
) )  /  ( log `  P ) ) )
7976, 78syl5eq 2487 . . . . . . . . . 10  |-  ( ph  -> 
-u R  =  ( ( log `  ( F `  P )
)  /  ( log `  P ) ) )
8075, 79eqtrd 2475 . . . . . . . . 9  |-  ( ph  ->  ( -u 1  x.  R )  =  ( ( log `  ( F `  P )
)  /  ( log `  P ) ) )
8180oveq2d 6128 . . . . . . . 8  |-  ( ph  ->  ( P  ^c 
( -u 1  x.  R
) )  =  ( P  ^c  ( ( log `  ( F `  P )
)  /  ( log `  P ) ) ) )
828nnrpd 11047 . . . . . . . . 9  |-  ( ph  ->  P  e.  RR+ )
83 neg1rr 10447 . . . . . . . . . 10  |-  -u 1  e.  RR
8483a1i 11 . . . . . . . . 9  |-  ( ph  -> 
-u 1  e.  RR )
8582, 84, 74cxpmuld 22201 . . . . . . . 8  |-  ( ph  ->  ( P  ^c 
( -u 1  x.  R
) )  =  ( ( P  ^c  -u 1 )  ^c  R ) )
8659, 16, 77cxpefd 22179 . . . . . . . . 9  |-  ( ph  ->  ( P  ^c 
( ( log `  ( F `  P )
)  /  ( log `  P ) ) )  =  ( exp `  (
( ( log `  ( F `  P )
)  /  ( log `  P ) )  x.  ( log `  P
) ) ) )
8721recnd 9433 . . . . . . . . . . 11  |-  ( ph  ->  ( log `  ( F `  P )
)  e.  CC )
8824rpne0d 11053 . . . . . . . . . . 11  |-  ( ph  ->  ( log `  P
)  =/=  0 )
8987, 35, 88divcan1d 10129 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( log `  ( F `  P
) )  /  ( log `  P ) )  x.  ( log `  P
) )  =  ( log `  ( F `
 P ) ) )
9089fveq2d 5716 . . . . . . . . 9  |-  ( ph  ->  ( exp `  (
( ( log `  ( F `  P )
)  /  ( log `  P ) )  x.  ( log `  P
) ) )  =  ( exp `  ( log `  ( F `  P ) ) ) )
9120reeflogd 22095 . . . . . . . . 9  |-  ( ph  ->  ( exp `  ( log `  ( F `  P ) ) )  =  ( F `  P ) )
9286, 90, 913eqtrd 2479 . . . . . . . 8  |-  ( ph  ->  ( P  ^c 
( ( log `  ( F `  P )
)  /  ( log `  P ) ) )  =  ( F `  P ) )
9381, 85, 923eqtr3d 2483 . . . . . . 7  |-  ( ph  ->  ( ( P  ^c  -u 1 )  ^c  R )  =  ( F `  P ) )
9453, 73, 933eqtrrd 2480 . . . . . 6  |-  ( ph  ->  ( F `  P
)  =  ( ( y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  R ) ) `  P
) )
95 fveq2 5712 . . . . . . 7  |-  ( P  =  p  ->  ( F `  P )  =  ( F `  p ) )
96 fveq2 5712 . . . . . . 7  |-  ( P  =  p  ->  (
( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  P )  =  ( ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p ) )
9795, 96eqeq12d 2457 . . . . . 6  |-  ( P  =  p  ->  (
( F `  P
)  =  ( ( y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  R ) ) `  P
)  <->  ( F `  p )  =  ( ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p ) ) )
9894, 97syl5ibcom 220 . . . . 5  |-  ( ph  ->  ( P  =  p  ->  ( F `  p )  =  ( ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p ) ) )
9998adantr 465 . . . 4  |-  ( (
ph  /\  p  e.  Prime )  ->  ( P  =  p  ->  ( F `
 p )  =  ( ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  R ) ) `  p ) ) )
100 prmnn 13787 . . . . . . . . 9  |-  ( p  e.  Prime  ->  p  e.  NN )
101100ad2antlr 726 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  p  e.  NN )
102 nnq 10987 . . . . . . . 8  |-  ( p  e.  NN  ->  p  e.  QQ )
103101, 102syl 16 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  p  e.  QQ )
104 fveq2 5712 . . . . . . . . 9  |-  ( y  =  p  ->  (
( J `  P
) `  y )  =  ( ( J `
 P ) `  p ) )
105104oveq1d 6127 . . . . . . . 8  |-  ( y  =  p  ->  (
( ( J `  P ) `  y
)  ^c  R )  =  ( ( ( J `  P
) `  p )  ^c  R )
)
106 ovex 6137 . . . . . . . 8  |-  ( ( ( J `  P
) `  p )  ^c  R )  e.  _V
107105, 50, 106fvmpt 5795 . . . . . . 7  |-  ( p  e.  QQ  ->  (
( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p )  =  ( ( ( J `  P ) `  p
)  ^c  R ) )
108103, 107syl 16 . . . . . 6  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p )  =  ( ( ( J `  P ) `  p
)  ^c  R ) )
10974ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  R  e.  CC )
1101091cxpd 22174 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
1  ^c  R )  =  1 )
1113ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  P  e.  Prime )
11245padicval 22888 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  p  e.  QQ )  ->  (
( J `  P
) `  p )  =  if ( p  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  p ) ) ) )
113111, 103, 112syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( J `  P
) `  p )  =  if ( p  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  p ) ) ) )
114101nnne0d 10387 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  p  =/=  0 )
115114neneqd 2627 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  -.  p  =  0 )
116 iffalse 3820 . . . . . . . . . 10  |-  ( -.  p  =  0  ->  if ( p  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  p ) ) )  =  ( P ^ -u ( P 
pCnt  p ) ) )
117115, 116syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  if ( p  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  p ) ) )  =  ( P ^ -u ( P 
pCnt  p ) ) )
118 pceq0 13958 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  p  e.  NN )  ->  (
( P  pCnt  p
)  =  0  <->  -.  P  ||  p ) )
1193, 100, 118syl2an 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  p  e.  Prime )  ->  ( ( P  pCnt  p )  =  0  <->  -.  P  ||  p
) )
120 dvdsprm 13806 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  p  e.  Prime )  ->  ( P  ||  p  <->  P  =  p ) )
1215, 120sylan 471 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  p  e.  Prime )  ->  ( P  ||  p  <->  P  =  p
) )
122121necon3bbid 2636 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  p  e.  Prime )  ->  ( -.  P  ||  p  <->  P  =/=  p ) )
123119, 122bitrd 253 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  p  e.  Prime )  ->  ( ( P  pCnt  p )  =  0  <->  P  =/=  p
) )
124123biimpar 485 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( P  pCnt  p )  =  0 )
125124negeqd 9625 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  -u ( P  pCnt  p )  = 
-u 0 )
126 neg0 9676 . . . . . . . . . . . 12  |-  -u 0  =  0
127125, 126syl6eq 2491 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  -u ( P  pCnt  p )  =  0 )
128127oveq2d 6128 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( P ^ -u ( P 
pCnt  p ) )  =  ( P ^ 0 ) )
12959ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  P  e.  CC )
130129exp0d 12023 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( P ^ 0 )  =  1 )
131128, 130eqtrd 2475 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( P ^ -u ( P 
pCnt  p ) )  =  1 )
132113, 117, 1313eqtrd 2479 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( J `  P
) `  p )  =  1 )
133132oveq1d 6127 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( ( J `  P ) `  p
)  ^c  R )  =  ( 1  ^c  R ) )
134 2re 10412 . . . . . . . . . . . . 13  |-  2  e.  RR
135134a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
2  e.  RR )
136 ostth3.6 . . . . . . . . . . . . . 14  |-  S  =  if ( ( F `
 P )  <_ 
( F `  p
) ,  ( F `
 p ) ,  ( F `  P
) )
1372ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  F  e.  A )
13811, 13abvcl 16931 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  A  /\  p  e.  QQ )  ->  ( F `  p
)  e.  RR )
139137, 103, 138syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( F `  p )  e.  RR )
14011, 13, 17abvgt0 16935 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  A  /\  p  e.  QQ  /\  p  =/=  0 )  ->  0  <  ( F `  p
) )
141137, 103, 114, 140syl3anc 1218 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  0  <  ( F `  p
) )
142139, 141elrpd 11046 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( F `  p )  e.  RR+ )
143142adantrr 716 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( F `  p
)  e.  RR+ )
14420ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( F `  P
)  e.  RR+ )
145 ifcl 3852 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  p
)  e.  RR+  /\  ( F `  P )  e.  RR+ )  ->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  e.  RR+ )
146143, 144, 145syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  e.  RR+ )
147136, 146syl5eqel 2527 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  S  e.  RR+ )
148147rprecred 11059 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( 1  /  S
)  e.  RR )
149 simprr 756 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( F `  p
)  <  1 )
15028ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( F `  P
)  <  1 )
151 breq1 4316 . . . . . . . . . . . . . . . 16  |-  ( ( F `  p )  =  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  -> 
( ( F `  p )  <  1  <->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  <  1 ) )
152 breq1 4316 . . . . . . . . . . . . . . . 16  |-  ( ( F `  P )  =  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  -> 
( ( F `  P )  <  1  <->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  <  1 ) )
153151, 152ifboth 3846 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  p
)  <  1  /\  ( F `  P )  <  1 )  ->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  <  1 )
154149, 150, 153syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  <  1 )
155136, 154syl5eqbr 4346 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  S  <  1 )
156147reclt1d 11061 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( S  <  1  <->  1  <  ( 1  /  S ) ) )
157155, 156mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
1  <  ( 1  /  S ) )
158 expnbnd 12014 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( 1  /  S
)  e.  RR  /\  1  <  ( 1  /  S ) )  ->  E. k  e.  NN  2  <  ( ( 1  /  S ) ^
k ) )
159135, 148, 157, 158syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  E. k  e.  NN  2  <  ( ( 1  /  S ) ^
k ) )
160147rpcnd 11050 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  S  e.  CC )
161160adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  S  e.  CC )
162147rpne0d 11053 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  S  =/=  0 )
163162adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  S  =/=  0 )
164 nnz 10689 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  k  e.  ZZ )
165164adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  k  e.  ZZ )
166161, 163, 165exprecd 12037 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( 1  /  S
) ^ k )  =  ( 1  / 
( S ^ k
) ) )
1672ad3antrrr 729 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  F  e.  A )
168 ax-1ne0 9372 . . . . . . . . . . . . . . . . . 18  |-  1  =/=  0
16912qrng1 22893 . . . . . . . . . . . . . . . . . . 19  |-  1  =  ( 1r `  Q )
17011, 169, 17abv1z 16939 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  A  /\  1  =/=  0 )  -> 
( F `  1
)  =  1 )
171167, 168, 170sylancl 662 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( F `  1 )  =  1 )
1728ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  P  e.  NN )
173 nnnn0 10607 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  NN  ->  k  e.  NN0 )
174 nnexpcl 11899 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  NN  /\  k  e.  NN0 )  -> 
( P ^ k
)  e.  NN )
175172, 173, 174syl2an 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( P ^ k )  e.  NN )
176175nnzd 10767 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( P ^ k )  e.  ZZ )
177100ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  p  e.  NN )
178 nnexpcl 11899 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  NN  /\  k  e.  NN0 )  -> 
( p ^ k
)  e.  NN )
179177, 173, 178syl2an 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
p ^ k )  e.  NN )
180179nnzd 10767 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
p ^ k )  e.  ZZ )
181 bezout 13747 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P ^ k
)  e.  ZZ  /\  ( p ^ k
)  e.  ZZ )  ->  E. a  e.  ZZ  E. b  e.  ZZ  (
( P ^ k
)  gcd  ( p ^ k ) )  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) ) )
182176, 180, 181syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( ( P ^ k )  gcd  ( p ^ k
) )  =  ( ( ( P ^
k )  x.  a
)  +  ( ( p ^ k )  x.  b ) ) )
183 simprl 755 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  P  =/=  p )
1843ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  P  e.  Prime )
185 simplr 754 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  p  e.  Prime )
186 prmrp 13808 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( P  e.  Prime  /\  p  e.  Prime )  ->  (
( P  gcd  p
)  =  1  <->  P  =/=  p ) )
187184, 185, 186syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( ( P  gcd  p )  =  1  <-> 
P  =/=  p ) )
188183, 187mpbird 232 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( P  gcd  p
)  =  1 )
189188adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( P  gcd  p )  =  1 )
190172adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  P  e.  NN )
191177adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  p  e.  NN )
192 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  k  e.  NN )
193 rppwr 13762 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( P  e.  NN  /\  p  e.  NN  /\  k  e.  NN )  ->  (
( P  gcd  p
)  =  1  -> 
( ( P ^
k )  gcd  (
p ^ k ) )  =  1 ) )
194190, 191, 192, 193syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( P  gcd  p
)  =  1  -> 
( ( P ^
k )  gcd  (
p ^ k ) )  =  1 ) )
195189, 194mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( P ^ k
)  gcd  ( p ^ k ) )  =  1 )
196195adantrr 716 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( P ^ k
)  gcd  ( p ^ k ) )  =  1 )
197196eqeq1d 2451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( P ^
k )  gcd  (
p ^ k ) )  =  ( ( ( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) )  <->  1  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) ) ) )
1982ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  F  e.  A )
199175adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( P ^ k )  e.  NN )
200 nnq 10987 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( P ^ k )  e.  NN  ->  ( P ^ k )  e.  QQ )
201199, 200syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( P ^ k )  e.  QQ )
202 simprrl 763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  a  e.  ZZ )
203 zq 10980 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( a  e.  ZZ  ->  a  e.  QQ )
204202, 203syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  a  e.  QQ )
205 qmulcl 10992 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( P ^ k
)  e.  QQ  /\  a  e.  QQ )  ->  ( ( P ^
k )  x.  a
)  e.  QQ )
206201, 204, 205syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( P ^ k
)  x.  a )  e.  QQ )
207179adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
p ^ k )  e.  NN )
208 nnq 10987 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( p ^ k )  e.  NN  ->  (
p ^ k )  e.  QQ )
209207, 208syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
p ^ k )  e.  QQ )
210 simprrr 764 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  b  e.  ZZ )
211 zq 10980 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( b  e.  ZZ  ->  b  e.  QQ )
212210, 211syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  b  e.  QQ )
213 qmulcl 10992 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( p ^ k
)  e.  QQ  /\  b  e.  QQ )  ->  ( ( p ^
k )  x.  b
)  e.  QQ )
214209, 212, 213syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( p ^ k
)  x.  b )  e.  QQ )
215 qaddcl 10990 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( P ^
k )  x.  a
)  e.  QQ  /\  ( ( p ^
k )  x.  b
)  e.  QQ )  ->  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) )  e.  QQ )
216206, 214, 215syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( P ^
k )  x.  a
)  +  ( ( p ^ k )  x.  b ) )  e.  QQ )
21711, 13abvcl 16931 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F  e.  A  /\  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) )  e.  QQ )  ->  ( F `  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) ) )  e.  RR )
218198, 216, 217syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) ) )  e.  RR )
21911, 13abvcl 16931 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F  e.  A  /\  ( ( P ^
k )  x.  a
)  e.  QQ )  ->  ( F `  ( ( P ^
k )  x.  a
) )  e.  RR )
220198, 206, 219syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( ( P ^ k )  x.  a ) )  e.  RR )
22111, 13abvcl 16931 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F  e.  A  /\  ( ( p ^
k )  x.  b
)  e.  QQ )  ->  ( F `  ( ( p ^
k )  x.  b
) )  e.  RR )
222198, 214, 221syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
p ^ k )  x.  b ) )  e.  RR )
223220, 222readdcld 9434 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  (
( P ^ k
)  x.  a ) )  +  ( F `
 ( ( p ^ k )  x.  b ) ) )  e.  RR )
224 rpexpcl 11905 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( S  e.  RR+  /\  k  e.  ZZ )  ->  ( S ^ k )  e.  RR+ )
225147, 164, 224syl2an 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( S ^ k )  e.  RR+ )
226225rpred 11048 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( S ^ k )  e.  RR )
227226adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( S ^ k )  e.  RR )
228 remulcl 9388 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 2  e.  RR  /\  ( S ^ k )  e.  RR )  -> 
( 2  x.  ( S ^ k ) )  e.  RR )
229134, 227, 228sylancr 663 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
2  x.  ( S ^ k ) )  e.  RR )
230 qex 10986 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  QQ  e.  _V
231 cnfldadd 17845 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  +  =  ( +g  ` fld )
23212, 231ressplusg 14301 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( QQ  e.  _V  ->  +  =  ( +g  `  Q
) )
233230, 232ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  +  =  ( +g  `  Q )
23411, 13, 233abvtri 16937 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F  e.  A  /\  ( ( P ^
k )  x.  a
)  e.  QQ  /\  ( ( p ^
k )  x.  b
)  e.  QQ )  ->  ( F `  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) ) )  <_  (
( F `  (
( P ^ k
)  x.  a ) )  +  ( F `
 ( ( p ^ k )  x.  b ) ) ) )
235198, 206, 214, 234syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) ) )  <_  ( ( F `
 ( ( P ^ k )  x.  a ) )  +  ( F `  (
( p ^ k
)  x.  b ) ) ) )
236 cnfldmul 17846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  x.  =  ( .r ` fld )
23712, 236ressmulr 14312 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( QQ  e.  _V  ->  x.  =  ( .r `  Q ) )
238230, 237ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  x.  =  ( .r `  Q )
23911, 13, 238abvmul 16936 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F  e.  A  /\  ( P ^ k )  e.  QQ  /\  a  e.  QQ )  ->  ( F `  ( ( P ^ k )  x.  a ) )  =  ( ( F `  ( P ^ k ) )  x.  ( F `
 a ) ) )
240198, 201, 204, 239syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( ( P ^ k )  x.  a ) )  =  ( ( F `  ( P ^ k ) )  x.  ( F `
 a ) ) )
24110ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  P  e.  QQ )
242173ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  k  e.  NN0 )
24312, 11qabvexp 22897 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F  e.  A  /\  P  e.  QQ  /\  k  e.  NN0 )  ->  ( F `  ( P ^ k ) )  =  ( ( F `
 P ) ^
k ) )
244198, 241, 242, 243syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( P ^ k ) )  =  ( ( F `
 P ) ^
k ) )
245244oveq1d 6127 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  ( P ^ k ) )  x.  ( F `  a ) )  =  ( ( ( F `
 P ) ^
k )  x.  ( F `  a )
) )
246240, 245eqtrd 2475 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( ( P ^ k )  x.  a ) )  =  ( ( ( F `
 P ) ^
k )  x.  ( F `  a )
) )
247198, 241, 14syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  P )  e.  RR )
248247, 242reexpcld 12046 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  P
) ^ k )  e.  RR )
24911, 13abvcl 16931 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F  e.  A  /\  a  e.  QQ )  ->  ( F `  a
)  e.  RR )
250198, 204, 249syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  a )  e.  RR )
251248, 250remulcld 9435 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  P ) ^ k
)  x.  ( F `
 a ) )  e.  RR )
252 elz 10669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( a  e.  ZZ  <->  ( a  e.  RR  /\  ( a  =  0  \/  a  e.  NN  \/  -u a  e.  NN ) ) )
253252simprbi 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( a  e.  ZZ  ->  (
a  =  0  \/  a  e.  NN  \/  -u a  e.  NN ) )
254253adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( a  =  0  \/  a  e.  NN  \/  -u a  e.  NN ) )
25511, 17abv0 16938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( F  e.  A  ->  ( F `  0 )  =  0 )
2562, 255syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ph  ->  ( F `  0
)  =  0 )
257 0le1 9884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  0  <_  1
258256, 257syl6eqbr 4350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ph  ->  ( F `  0
)  <_  1 )
259258adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( F `
 0 )  <_ 
1 )
260 fveq2 5712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( a  =  0  ->  ( F `  a )  =  ( F ` 
0 ) )
261260breq1d 4323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( a  =  0  ->  (
( F `  a
)  <_  1  <->  ( F `  0 )  <_ 
1 ) )
262259, 261syl5ibrcom 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( a  =  0  ->  ( F `  a )  <_  1 ) )
263 ostth3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ph  ->  A. n  e.  NN  -.  1  <  ( F `
 n ) )
264 nnq 10987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( n  e.  NN  ->  n  e.  QQ )
26511, 13abvcl 16931 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( F  e.  A  /\  n  e.  QQ )  ->  ( F `  n
)  e.  RR )
2662, 264, 265syl2an 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e.  RR )
267 1re 9406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  1  e.  RR
268 lenlt 9474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( ( F `  n
)  e.  RR  /\  1  e.  RR )  ->  ( ( F `  n )  <_  1  <->  -.  1  <  ( F `
 n ) ) )
269266, 267, 268sylancl 662 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  <_  1  <->  -.  1  <  ( F `  n
) ) )
270269ralbidva 2752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ph  ->  ( A. n  e.  NN  ( F `  n )  <_  1  <->  A. n  e.  NN  -.  1  <  ( F `  n ) ) )
271263, 270mpbird 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ph  ->  A. n  e.  NN  ( F `  n )  <_  1 )
272 fveq2 5712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( n  =  a  ->  ( F `  n )  =  ( F `  a ) )
273272breq1d 4323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( n  =  a  ->  (
( F `  n
)  <_  1  <->  ( F `  a )  <_  1
) )
274273rspccv 3091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( A. n  e.  NN  ( F `  n )  <_  1  ->  ( a  e.  NN  ->  ( F `  a )  <_  1
) )
275271, 274syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ph  ->  ( a  e.  NN  ->  ( F `  a
)  <_  1 ) )
276275adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( a  e.  NN  ->  ( F `  a )  <_  1 ) )
2772adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  ->  F  e.  A )
278203ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
a  e.  QQ )
279 eqid 2443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( invg `  Q )  =  ( invg `  Q )
28011, 13, 279abvneg 16941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( F  e.  A  /\  a  e.  QQ )  ->  ( F `  (
( invg `  Q ) `  a
) )  =  ( F `  a ) )
281277, 278, 280syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
( F `  (
( invg `  Q ) `  a
) )  =  ( F `  a ) )
28212qrngneg 22894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( a  e.  QQ  ->  (
( invg `  Q ) `  a
)  =  -u a
)
283278, 282syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
( ( invg `  Q ) `  a
)  =  -u a
)
284 simprr 756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  ->  -u a  e.  NN )
285283, 284eqeltrd 2517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
( ( invg `  Q ) `  a
)  e.  NN )
286271adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  ->  A. n  e.  NN  ( F `  n )  <_  1 )
287 fveq2 5712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( n  =  ( ( invg `  Q ) `
 a )  -> 
( F `  n
)  =  ( F `
 ( ( invg `  Q ) `
 a ) ) )
288287breq1d 4323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( n  =  ( ( invg `  Q ) `
 a )  -> 
( ( F `  n )  <_  1  <->  ( F `  ( ( invg `  Q
) `  a )
)  <_  1 ) )
289288rspcv 3090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( invg `  Q ) `  a
)  e.  NN  ->  ( A. n  e.  NN  ( F `  n )  <_  1  ->  ( F `  ( ( invg `  Q ) `
 a ) )  <_  1 ) )
290285, 286, 289sylc 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
( F `  (
( invg `  Q ) `  a
) )  <_  1
)
291281, 290eqbrtrrd 4335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
( F `  a
)  <_  1 )
292291expr 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( -u a  e.  NN  ->  ( F `  a )  <_  1 ) )
293262, 276, 2923jaod 1282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( ( a  =  0  \/  a  e.  NN  \/  -u a  e.  NN )  ->  ( F `  a )  <_  1
) )
294254, 293mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( F `
 a )  <_ 
1 )
295294ralrimiva 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ph  ->  A. a  e.  ZZ  ( F `  a )  <_  1 )
296295ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  A. a  e.  ZZ  ( F `  a )  <_  1
)
297 rsp 2797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( A. a  e.  ZZ  ( F `  a )  <_  1  ->  ( a  e.  ZZ  ->  ( F `  a )  <_  1
) )
298296, 202, 297sylc 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  a )  <_  1 )
299267a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  1  e.  RR )
300164ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  k  e.  ZZ )
30119ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <  ( F `  P
) )
302 expgt0 11918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( F `  P
)  e.  RR  /\  k  e.  ZZ  /\  0  <  ( F `  P
) )  ->  0  <  ( ( F `  P ) ^ k
) )
303247, 300, 301, 302syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <  ( ( F `  P ) ^ k
) )
304 lemul2 10203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F `  a
)  e.  RR  /\  1  e.  RR  /\  (
( ( F `  P ) ^ k
)  e.  RR  /\  0  <  ( ( F `
 P ) ^
k ) ) )  ->  ( ( F `
 a )  <_ 
1  <->  ( ( ( F `  P ) ^ k )  x.  ( F `  a
) )  <_  (
( ( F `  P ) ^ k
)  x.  1 ) ) )
305250, 299, 248, 303, 304syl112anc 1222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  a
)  <_  1  <->  ( (
( F `  P
) ^ k )  x.  ( F `  a ) )  <_ 
( ( ( F `
 P ) ^
k )  x.  1 ) ) )
306298, 305mpbid 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  P ) ^ k
)  x.  ( F `
 a ) )  <_  ( ( ( F `  P ) ^ k )  x.  1 ) )
307248recnd 9433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  P
) ^ k )  e.  CC )
308307mulid1d 9424 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  P ) ^ k
)  x.  1 )  =  ( ( F `
 P ) ^
k ) )
309306, 308breqtrd 4337 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  P ) ^ k
)  x.  ( F `
 a ) )  <_  ( ( F `
 P ) ^
k ) )
310147rpred 11048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  S  e.  RR )
311310adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  S  e.  RR )
312144adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  P )  e.  RR+ )
313312rpge0d 11052 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <_  ( F `  P
) )
314177adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  p  e.  NN )
315314, 102syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  p  e.  QQ )
316198, 315, 138syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  p )  e.  RR )
317 max1 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F `  P
)  e.  RR  /\  ( F `  p )  e.  RR )  -> 
( F `  P
)  <_  if (
( F `  P
)  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) ) )
318247, 316, 317syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  P )  <_  if ( ( F `
 P )  <_ 
( F `  p
) ,  ( F `
 p ) ,  ( F `  P
) ) )
319318, 136syl6breqr 4353 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  P )  <_  S )
320 leexp1a 11943 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( F `  P )  e.  RR  /\  S  e.  RR  /\  k  e.  NN0 )  /\  ( 0  <_  ( F `  P )  /\  ( F `  P
)  <_  S )
)  ->  ( ( F `  P ) ^ k )  <_ 
( S ^ k
) )
321247, 311, 242, 313, 319, 320syl32anc 1226 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  P
) ^ k )  <_  ( S ^
k ) )
322251, 248, 227, 309, 321letrd 9549 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  P ) ^ k
)  x.  ( F `
 a ) )  <_  ( S ^
k ) )
323246, 322eqbrtrd 4333 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( ( P ^ k )  x.  a ) )  <_ 
( S ^ k
) )
32411, 13, 238abvmul 16936 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F  e.  A  /\  ( p ^ k
)  e.  QQ  /\  b  e.  QQ )  ->  ( F `  (
( p ^ k
)  x.  b ) )  =  ( ( F `  ( p ^ k ) )  x.  ( F `  b ) ) )
325198, 209, 212, 324syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
p ^ k )  x.  b ) )  =  ( ( F `
 ( p ^
k ) )  x.  ( F `  b
) ) )
32612, 11qabvexp 22897 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F  e.  A  /\  p  e.  QQ  /\  k  e.  NN0 )  ->  ( F `  ( p ^ k ) )  =  ( ( F `
 p ) ^
k ) )
327198, 315, 242, 326syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( p ^ k ) )  =  ( ( F `
 p ) ^
k ) )
328327oveq1d 6127 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  (
p ^ k ) )  x.  ( F `
 b ) )  =  ( ( ( F `  p ) ^ k )  x.  ( F `  b
) ) )
329325, 328eqtrd 2475 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
p ^ k )  x.  b ) )  =  ( ( ( F `  p ) ^ k )  x.  ( F `  b
) ) )
330316, 242reexpcld 12046 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  p
) ^ k )  e.  RR )
33111, 13abvcl 16931 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F  e.  A  /\  b  e.  QQ )  ->  ( F `  b
)  e.  RR )
332198, 212, 331syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  b )  e.  RR )
333330, 332remulcld 9435 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  p ) ^ k
)  x.  ( F `
 b ) )  e.  RR )
334 fveq2 5712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( a  =  b  ->  ( F `  a )  =  ( F `  b ) )
335334breq1d 4323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( a  =  b  ->  (
( F `  a
)  <_  1  <->  ( F `  b )  <_  1
) )
336335rspcv 3090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( b  e.  ZZ  ->  ( A. a  e.  ZZ  ( F `  a )  <_  1  ->  ( F `  b )  <_  1 ) )
337210, 296, 336sylc 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  b )  <_  1 )
338314nnne0d 10387 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  p  =/=  0 )
339198, 315, 338, 140syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <  ( F `  p
) )
340 expgt0 11918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( F `  p
)  e.  RR  /\  k  e.  ZZ  /\  0  <  ( F `  p
) )  ->  0  <  ( ( F `  p ) ^ k
) )
341316, 300, 339, 340syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <  ( ( F `  p ) ^ k
) )
342 lemul2 10203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F `  b
)  e.  RR  /\  1  e.  RR  /\  (
( ( F `  p ) ^ k
)  e.  RR  /\  0  <  ( ( F `
 p ) ^
k ) ) )  ->  ( ( F `
 b )  <_ 
1  <->  ( ( ( F `  p ) ^ k )  x.  ( F `  b
) )  <_  (
( ( F `  p ) ^ k
)  x.  1 ) ) )
343332, 299, 330, 341, 342syl112anc 1222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  b
)  <_  1  <->  ( (
( F `  p
) ^ k )  x.  ( F `  b ) )  <_ 
( ( ( F `
 p ) ^
k )  x.  1 ) ) )
344337, 343mpbid 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  p ) ^ k
)  x.  ( F `
 b ) )  <_  ( ( ( F `  p ) ^ k )  x.  1 ) )
345330recnd 9433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  p
) ^ k )  e.  CC )
346345mulid1d 9424 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  p ) ^ k
)  x.  1 )  =  ( ( F `
 p ) ^
k ) )
347344, 346breqtrd 4337 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  p ) ^ k
)  x.  ( F `
 b ) )  <_  ( ( F `
 p ) ^
k ) )
348143adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  p )  e.  RR+ )
349348rpge0d 11052 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <_  ( F `  p
) )
350 max2 11180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F `  P
)  e.  RR  /\  ( F `  p )  e.  RR )  -> 
( F `  p
)  <_  if (
( F `  P
)  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) ) )
351247, 316, 350syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  p )  <_  if ( ( F `
 P )  <_ 
( F `  p
) ,  ( F `
 p ) ,  ( F `  P
) ) )
352351, 136syl6breqr 4353 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  p )  <_  S )
353 leexp1a 11943 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( F `  p )  e.  RR  /\  S  e.  RR  /\  k  e.  NN0 )  /\  ( 0  <_  ( F `  p )  /\  ( F `  p
)  <_  S )
)  ->  ( ( F `  p ) ^ k )  <_ 
( S ^ k
) )
354316, 311, 242, 349, 352, 353syl32anc 1226 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  p
) ^ k )  <_  ( S ^
k ) )
355333, 330, 227, 347, 354letrd 9549 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  p ) ^ k
)  x.  ( F `
 b ) )  <_  ( S ^
k ) )
356329, 355eqbrtrd 4333 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
p ^ k )  x.  b ) )  <_  ( S ^
k ) )
357220, 222, 227, 227, 323, 356le2addd 9978 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  (
( P ^ k
)  x.  a ) )  +  ( F `
 ( ( p ^ k )  x.  b ) ) )  <_  ( ( S ^ k )  +  ( S ^ k
) ) )
358225rpcnd 11050 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( S ^ k )  e.  CC )
3593582timesd 10588 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
2  x.  ( S ^ k ) )  =  ( ( S ^ k )  +  ( S ^ k
) ) )
360359adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
2  x.  ( S ^ k ) )  =  ( ( S ^ k )  +  ( S ^ k
) ) )
361357, 360breqtrrd 4339 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  (
( P ^ k
)  x.  a ) )  +  ( F `
 ( ( p ^ k )  x.  b ) ) )  <_  ( 2  x.  ( S ^ k
) ) )
362218, 223, 229, 235, 361letrd 9549 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) ) )  <_  ( 2  x.  ( S ^ k
) ) )
363 fveq2 5712 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) )  ->  ( F `  1 )  =  ( F `  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) ) ) )
364363breq1d 4323 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) )  ->  (
( F `  1
)  <_  ( 2  x.  ( S ^
k ) )  <->  ( F `  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) ) )  <_  (
2  x.  ( S ^ k ) ) ) )
365362, 364syl5ibrcom 222 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
1  =  ( ( ( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) )  -> 
( F `  1
)  <_  ( 2  x.  ( S ^
k ) ) ) )
366197, 365sylbid 215 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( P ^
k )  gcd  (
p ^ k ) )  =  ( ( ( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) )  -> 
( F `  1
)  <_  ( 2  x.  ( S ^
k ) ) ) )
367366anassrs 648 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( (
( P ^ k
)  gcd  ( p ^ k ) )  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) )  ->  ( F `  1 )  <_  ( 2  x.  ( S ^ k ) ) ) )
368367rexlimdvva 2869 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( P ^ k
)  gcd  ( p ^ k ) )  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) )  ->  ( F `  1 )  <_  ( 2  x.  ( S ^ k ) ) ) )
369182, 368mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( F `  1 )  <_  ( 2  x.  ( S ^ k ) ) )
370171, 369eqbrtrrd 4335 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  1  <_  ( 2  x.  ( S ^ k ) ) )
371225rpregt0d 11054 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( S ^ k
)  e.  RR  /\  0  <  ( S ^
k ) ) )
372 ledivmul2 10230 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  2  e.  RR  /\  (
( S ^ k
)  e.  RR  /\  0  <  ( S ^
k ) ) )  ->  ( ( 1  /  ( S ^
k ) )  <_ 
2  <->  1  <_  (
2  x.  ( S ^ k ) ) ) )
373267, 134, 372mp3an12 1304 . . . . . . . . . . . . . . . . 17  |-  ( ( ( S ^ k
)  e.  RR  /\  0  <  ( S ^
k ) )  -> 
( ( 1  / 
( S ^ k
) )  <_  2  <->  1  <_  ( 2  x.  ( S ^ k
) ) ) )
374371, 373syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( 1  /  ( S ^ k ) )  <_  2  <->  1  <_  ( 2  x.  ( S ^ k ) ) ) )
375370, 374mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
1  /  ( S ^ k ) )  <_  2 )
376166, 375eqbrtrd 4333 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( 1  /  S
) ^ k )  <_  2 )
377 reexpcl 11903 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  /  S
)  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  /  S ) ^ k
)  e.  RR )
378148, 173, 377syl2an 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( 1  /  S
) ^ k )  e.  RR )
379 lenlt 9474 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 1  /  S ) ^ k
)  e.  RR  /\  2  e.  RR )  ->  ( ( ( 1  /  S ) ^
k )  <_  2  <->  -.  2  <  ( ( 1  /  S ) ^ k ) ) )
380378, 134, 379sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( ( 1  /  S ) ^ k
)  <_  2  <->  -.  2  <  ( ( 1  /  S ) ^ k
) ) )
381376, 380mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  -.  2  <  ( ( 1  /  S ) ^
k ) )
382381pm2.21d 106 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
2  <  ( (
1  /  S ) ^ k )  ->  -.  ( F `  p
)  <  1 ) )
383382rexlimdva 2862 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( E. k  e.  NN  2  <  (
( 1  /  S
) ^ k )  ->  -.  ( F `  p )  <  1
) )
384159, 383mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  -.  ( F `  p
)  <  1 )
385384expr 615 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( F `  p
)  <  1  ->  -.  ( F `  p
)  <  1 ) )
386385pm2.01d 169 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  -.  ( F `  p )  <  1 )
387263ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  A. n  e.  NN  -.  1  < 
( F `  n
) )
388 fveq2 5712 . . . . . . . . . . . 12  |-  ( n  =  p  ->  ( F `  n )  =  ( F `  p ) )
389388breq2d 4325 . . . . . . . . . . 11  |-  ( n  =  p  ->  (
1  <  ( F `  n )  <->  1  <  ( F `  p ) ) )
390389notbid 294 . . . . . . . . . 10  |-  ( n  =  p  ->  ( -.  1  <  ( F `
 n )  <->  -.  1  <  ( F `  p
) ) )
391390rspcv 3090 . . . . . . . . 9  |-  ( p  e.  NN  ->  ( A. n  e.  NN  -.  1  <  ( F `
 n )  ->  -.  1  <  ( F `
 p ) ) )
392101, 387, 391sylc 60 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  -.  1  <  ( F `  p ) )
393 lttri3 9479 . . . . . . . . 9  |-  ( ( ( F `  p
)  e.  RR  /\  1  e.  RR )  ->  ( ( F `  p )  =  1  <-> 
( -.  ( F `
 p )  <  1  /\  -.  1  <  ( F `  p
) ) ) )
394139, 267, 393sylancl 662 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( F `  p
)  =  1  <->  ( -.  ( F `  p
)  <  1  /\  -.  1  <  ( F `
 p ) ) ) )
395386, 392, 394mpbir2and 913 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( F `  p )  =  1 )
396110, 133, 3953eqtr4d 2485 . . . . . 6  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( ( J `  P ) `  p
)  ^c  R )  =  ( F `
 p ) )
397108, 396eqtr2d 2476 . . . . 5  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( F `  p )  =  ( ( y  e.  QQ  |->  ( ( ( J `  P
) `  y )  ^c  R )
) `  p )
)
398397ex 434 . . . 4  |-  ( (
ph  /\  p  e.  Prime )  ->  ( P  =/=  p  ->  ( F `  p )  =  ( ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p ) ) )
39999, 398pm2.61dne 2712 . . 3  |-  ( (
ph  /\  p  e.  Prime )  ->  ( F `  p )  =  ( ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p ) )
40012, 11, 2, 47, 399ostthlem2 22899 . 2  |-  ( ph  ->  F  =  ( y  e.  QQ  |->  ( ( ( J `  P
) `  y )  ^c  R )
) )
401 oveq2 6120 . . . . 5  |-  ( a  =  R  ->  (
( ( J `  P ) `  y
)  ^c  a )  =  ( ( ( J `  P
) `  y )  ^c  R )
)
402401mpteq2dv 4400 . . . 4  |-  ( a  =  R  ->  (
y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  a ) )  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  R ) ) )
403402eqeq2d 2454 . . 3  |-  ( a  =  R  ->  ( F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  a ) )  <-> 
F  =  ( y  e.  QQ  |->  ( ( ( J `  P
) `  y )  ^c  R )
) ) )
404403rspcev 3094 . 2  |-  ( ( R  e.  RR+  /\  F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  R ) ) )  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  a ) ) )
40544, 400, 404syl2anc 661 1  |-  ( ph  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  a ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 964    = wceq 1369    e. wcel 1756    =/= wne 2620   A.wral 2736   E.wrex 2737   _Vcvv 2993   ifcif 3812   class class class wbr 4313    e. cmpt 4371   ` cfv 5439  (class class class)co 6112   CCcc 9301   RRcr 9302   0cc0 9303   1c1 9304    + caddc 9306    x. cmul 9308    < clt 9439    <_ cle 9440   -ucneg 9617    / cdiv 10014   NNcn 10343   2c2 10392   NN0cn0 10600   ZZcz 10667   ZZ>=cuz 10882   QQcq 10974   RR+crp 11012   ^cexp 11886   expce 13368    || cdivides 13556    gcd cgcd 13711   Primecprime 13784    pCnt cpc 13924   ↾s cress 14196   +g cplusg 14259   .rcmulr 14260   invgcminusg 15432  AbsValcabv 16923  ℂfldccnfld 17840   logclog 22028    ^c ccxp 22029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381  ax-addf 9382  ax-mulf 9383
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-of 6341  df-om 6498  df-1st 6598  df-2nd 6599  df-supp 6712  df-tpos 6766  df-recs 6853  df-rdg 6887  df-1o 6941  df-2o 6942  df-oadd 6945  df-er 7122  df-map 7237  df-pm 7238  df-ixp 7285  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-fsupp 7642  df-fi 7682  df-sup 7712  df-oi 7745  df-card 8130  df-cda 8358  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-q 10975  df-rp 11013  df-xneg 11110  df-xadd 11111  df-xmul 11112  df-ioo 11325  df-ioc 11326  df-ico 11327  df-icc 11328  df-fz 11459  df-fzo 11570  df-fl 11663  df-mod 11730  df-seq 11828  df-exp 11887  df-fac 12073  df-bc 12100  df-hash 12125  df-shft 12577  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-limsup 12970  df-clim 12987  df-rlim 12988  df-sum 13185  df-ef 13374  df-sin 13376  df-cos 13377  df-pi 13379  df-dvds 13557  df-gcd 13712  df-prm 13785  df-pc 13925  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-mulr 14273  df-starv 14274  df-sca 14275  df-vsca 14276  df-ip 14277  df-tset 14278  df-ple 14279  df-ds 14281  df-unif 14282  df-hom 14283  df-cco 14284  df-rest 14382  df-topn 14383  df-0g 14401  df-gsum 14402  df-topgen 14403  df-pt 14404  df-prds 14407  df-xrs 14461  df-qtop 14466  df-imas 14467  df-xps 14469  df-mre 14545  df-mrc 14546  df-acs 14548  df-mnd 15436  df-submnd 15486  df-grp 15566  df-minusg 15567  df-mulg 15569  df-subg 15699  df-cntz 15856  df-cmn 16300  df-mgp 16614  df-ur 16626  df-rng 16669  df-cring 16670  df-oppr 16737  df-dvdsr 16755  df-unit 16756  df-invr 16786  df-dvr 16797  df-drng 16856  df-subrg 16885  df-abv 16924  df-psmet 17831  df-xmet 17832  df-met 17833  df-bl 17834  df-mopn 17835  df-fbas 17836  df-fg