MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2lem3 Structured version   Unicode version

Theorem ostth2lem3 22896
Description: Lemma for ostth2 22898. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
ostth.k  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
ostth.1  |-  ( ph  ->  F  e.  A )
ostth2.2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
ostth2.3  |-  ( ph  ->  1  <  ( F `
 N ) )
ostth2.4  |-  R  =  ( ( log `  ( F `  N )
)  /  ( log `  N ) )
ostth2.5  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
ostth2.6  |-  S  =  ( ( log `  ( F `  M )
)  /  ( log `  M ) )
ostth2.7  |-  T  =  if ( ( F `
 M )  <_ 
1 ,  1 ,  ( F `  M
) )
ostth2.8  |-  U  =  ( ( log `  N
)  /  ( log `  M ) )
Assertion
Ref Expression
ostth2lem3  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( ( F `  N
)  /  ( T  ^c  U ) ) ^ X )  <_  ( X  x.  ( ( M  x.  T )  x.  ( U  +  1 ) ) ) )
Distinct variable groups:    x, M    x, q, ph    x, T    x, U    x, X    A, q, x    x, N    x, Q    F, q    R, q    x, F
Allowed substitution hints:    Q( q)    R( x)    S( x, q)    T( q)    U( q)    J( x, q)    K( x, q)    M( q)    N( q)    X( q)

Proof of Theorem ostth2lem3
StepHypRef Expression
1 ostth.1 . . . . . 6  |-  ( ph  ->  F  e.  A )
2 ostth2.2 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
3 eluz2b2 10939 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )
42, 3sylib 196 . . . . . . . 8  |-  ( ph  ->  ( N  e.  NN  /\  1  <  N ) )
54simpld 459 . . . . . . 7  |-  ( ph  ->  N  e.  NN )
6 nnq 10978 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  QQ )
75, 6syl 16 . . . . . 6  |-  ( ph  ->  N  e.  QQ )
8 qabsabv.a . . . . . . 7  |-  A  =  (AbsVal `  Q )
9 qrng.q . . . . . . . 8  |-  Q  =  (flds  QQ )
109qrngbas 22880 . . . . . . 7  |-  QQ  =  ( Base `  Q )
118, 10abvcl 16921 . . . . . 6  |-  ( ( F  e.  A  /\  N  e.  QQ )  ->  ( F `  N
)  e.  RR )
121, 7, 11syl2anc 661 . . . . 5  |-  ( ph  ->  ( F `  N
)  e.  RR )
1312adantr 465 . . . 4  |-  ( (
ph  /\  X  e.  NN )  ->  ( F `
 N )  e.  RR )
1413recnd 9424 . . 3  |-  ( (
ph  /\  X  e.  NN )  ->  ( F `
 N )  e.  CC )
15 ostth2.7 . . . . . . 7  |-  T  =  if ( ( F `
 M )  <_ 
1 ,  1 ,  ( F `  M
) )
16 1re 9397 . . . . . . . 8  |-  1  e.  RR
17 ostth2.5 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
18 eluz2b2 10939 . . . . . . . . . . . 12  |-  ( M  e.  ( ZZ>= `  2
)  <->  ( M  e.  NN  /\  1  < 
M ) )
1917, 18sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  ( M  e.  NN  /\  1  <  M ) )
2019simpld 459 . . . . . . . . . 10  |-  ( ph  ->  M  e.  NN )
21 nnq 10978 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  QQ )
2220, 21syl 16 . . . . . . . . 9  |-  ( ph  ->  M  e.  QQ )
238, 10abvcl 16921 . . . . . . . . 9  |-  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  M
)  e.  RR )
241, 22, 23syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( F `  M
)  e.  RR )
25 ifcl 3843 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( F `  M )  e.  RR )  ->  if ( ( F `  M )  <_  1 ,  1 ,  ( F `  M ) )  e.  RR )
2616, 24, 25sylancr 663 . . . . . . 7  |-  ( ph  ->  if ( ( F `
 M )  <_ 
1 ,  1 ,  ( F `  M
) )  e.  RR )
2715, 26syl5eqel 2527 . . . . . 6  |-  ( ph  ->  T  e.  RR )
2827adantr 465 . . . . 5  |-  ( (
ph  /\  X  e.  NN )  ->  T  e.  RR )
29 0red 9399 . . . . . . . . 9  |-  ( ph  ->  0  e.  RR )
30 1red 9413 . . . . . . . . 9  |-  ( ph  ->  1  e.  RR )
31 0lt1 9874 . . . . . . . . . 10  |-  0  <  1
3231a1i 11 . . . . . . . . 9  |-  ( ph  ->  0  <  1 )
33 max2 11171 . . . . . . . . . . 11  |-  ( ( ( F `  M
)  e.  RR  /\  1  e.  RR )  ->  1  <_  if (
( F `  M
)  <_  1 , 
1 ,  ( F `
 M ) ) )
3424, 30, 33syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  1  <_  if (
( F `  M
)  <_  1 , 
1 ,  ( F `
 M ) ) )
3534, 15syl6breqr 4344 . . . . . . . . 9  |-  ( ph  ->  1  <_  T )
3629, 30, 27, 32, 35ltletrd 9543 . . . . . . . 8  |-  ( ph  ->  0  <  T )
3736adantr 465 . . . . . . 7  |-  ( (
ph  /\  X  e.  NN )  ->  0  < 
T )
3828, 37elrpd 11037 . . . . . 6  |-  ( (
ph  /\  X  e.  NN )  ->  T  e.  RR+ )
3938rpge0d 11043 . . . . 5  |-  ( (
ph  /\  X  e.  NN )  ->  0  <_  T )
40 ostth2.8 . . . . . . . 8  |-  U  =  ( ( log `  N
)  /  ( log `  M ) )
415nnred 10349 . . . . . . . . . 10  |-  ( ph  ->  N  e.  RR )
424simprd 463 . . . . . . . . . 10  |-  ( ph  ->  1  <  N )
4341, 42rplogcld 22090 . . . . . . . . 9  |-  ( ph  ->  ( log `  N
)  e.  RR+ )
4420nnred 10349 . . . . . . . . . 10  |-  ( ph  ->  M  e.  RR )
4519simprd 463 . . . . . . . . . 10  |-  ( ph  ->  1  <  M )
4644, 45rplogcld 22090 . . . . . . . . 9  |-  ( ph  ->  ( log `  M
)  e.  RR+ )
4743, 46rpdivcld 11056 . . . . . . . 8  |-  ( ph  ->  ( ( log `  N
)  /  ( log `  M ) )  e.  RR+ )
4840, 47syl5eqel 2527 . . . . . . 7  |-  ( ph  ->  U  e.  RR+ )
4948rpred 11039 . . . . . 6  |-  ( ph  ->  U  e.  RR )
5049adantr 465 . . . . 5  |-  ( (
ph  /\  X  e.  NN )  ->  U  e.  RR )
5128, 39, 50recxpcld 22180 . . . 4  |-  ( (
ph  /\  X  e.  NN )  ->  ( T  ^c  U )  e.  RR )
5251recnd 9424 . . 3  |-  ( (
ph  /\  X  e.  NN )  ->  ( T  ^c  U )  e.  CC )
5338, 50rpcxpcld 22187 . . . 4  |-  ( (
ph  /\  X  e.  NN )  ->  ( T  ^c  U )  e.  RR+ )
5453rpne0d 11044 . . 3  |-  ( (
ph  /\  X  e.  NN )  ->  ( T  ^c  U )  =/=  0 )
55 nnnn0 10598 . . . 4  |-  ( X  e.  NN  ->  X  e.  NN0 )
5655adantl 466 . . 3  |-  ( (
ph  /\  X  e.  NN )  ->  X  e. 
NN0 )
5714, 52, 54, 56expdivd 12034 . 2  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( ( F `  N
)  /  ( T  ^c  U ) ) ^ X )  =  ( ( ( F `  N ) ^ X )  / 
( ( T  ^c  U ) ^ X
) ) )
58 reexpcl 11894 . . . . . 6  |-  ( ( ( F `  N
)  e.  RR  /\  X  e.  NN0 )  -> 
( ( F `  N ) ^ X
)  e.  RR )
5912, 55, 58syl2an 477 . . . . 5  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( F `  N ) ^ X )  e.  RR )
6020adantr 465 . . . . . . . 8  |-  ( (
ph  /\  X  e.  NN )  ->  M  e.  NN )
6160nnred 10349 . . . . . . 7  |-  ( (
ph  /\  X  e.  NN )  ->  M  e.  RR )
62 nnre 10341 . . . . . . . . . . . 12  |-  ( X  e.  NN  ->  X  e.  RR )
6362adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  X  e.  RR )
6463, 50remulcld 9426 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( X  x.  U )  e.  RR )
6556nn0ge0d 10651 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  0  <_  X )
6648rpge0d 11043 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  U )
6766adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  0  <_  U )
6863, 50, 65, 67mulge0d 9928 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  0  <_ 
( X  x.  U
) )
69 flge0nn0 11678 . . . . . . . . . 10  |-  ( ( ( X  x.  U
)  e.  RR  /\  0  <_  ( X  x.  U ) )  -> 
( |_ `  ( X  x.  U )
)  e.  NN0 )
7064, 68, 69syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  NN )  ->  ( |_
`  ( X  x.  U ) )  e. 
NN0 )
71 peano2nn0 10632 . . . . . . . . 9  |-  ( ( |_ `  ( X  x.  U ) )  e.  NN0  ->  ( ( |_ `  ( X  x.  U ) )  +  1 )  e. 
NN0 )
7270, 71syl 16 . . . . . . . 8  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( |_ `  ( X  x.  U ) )  +  1 )  e. 
NN0 )
7372nn0red 10649 . . . . . . 7  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( |_ `  ( X  x.  U ) )  +  1 )  e.  RR )
7461, 73remulcld 9426 . . . . . 6  |-  ( (
ph  /\  X  e.  NN )  ->  ( M  x.  ( ( |_
`  ( X  x.  U ) )  +  1 ) )  e.  RR )
7528, 72reexpcld 12037 . . . . . 6  |-  ( (
ph  /\  X  e.  NN )  ->  ( T ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) )  e.  RR )
7674, 75remulcld 9426 . . . . 5  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( M  x.  ( ( |_ `  ( X  x.  U ) )  +  1 ) )  x.  ( T ^
( ( |_ `  ( X  x.  U
) )  +  1 ) ) )  e.  RR )
77 peano2re 9554 . . . . . . . . 9  |-  ( U  e.  RR  ->  ( U  +  1 )  e.  RR )
7850, 77syl 16 . . . . . . . 8  |-  ( (
ph  /\  X  e.  NN )  ->  ( U  +  1 )  e.  RR )
7963, 78remulcld 9426 . . . . . . 7  |-  ( (
ph  /\  X  e.  NN )  ->  ( X  x.  ( U  + 
1 ) )  e.  RR )
8061, 79remulcld 9426 . . . . . 6  |-  ( (
ph  /\  X  e.  NN )  ->  ( M  x.  ( X  x.  ( U  +  1
) ) )  e.  RR )
8151, 56reexpcld 12037 . . . . . . 7  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( T  ^c  U ) ^ X )  e.  RR )
8281, 28remulcld 9426 . . . . . 6  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( ( T  ^c  U ) ^ X
)  x.  T )  e.  RR )
8380, 82remulcld 9426 . . . . 5  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( M  x.  ( X  x.  ( U  + 
1 ) ) )  x.  ( ( ( T  ^c  U ) ^ X )  x.  T ) )  e.  RR )
841adantr 465 . . . . . . 7  |-  ( (
ph  /\  X  e.  NN )  ->  F  e.  A )
857adantr 465 . . . . . . 7  |-  ( (
ph  /\  X  e.  NN )  ->  N  e.  QQ )
869, 8qabvexp 22887 . . . . . . 7  |-  ( ( F  e.  A  /\  N  e.  QQ  /\  X  e.  NN0 )  ->  ( F `  ( N ^ X ) )  =  ( ( F `  N ) ^ X
) )
8784, 85, 56, 86syl3anc 1218 . . . . . 6  |-  ( (
ph  /\  X  e.  NN )  ->  ( F `
 ( N ^ X ) )  =  ( ( F `  N ) ^ X
) )
8863recnd 9424 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  X  e.  NN )  ->  X  e.  CC )
8943rpred 11039 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( log `  N
)  e.  RR )
9089recnd 9424 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( log `  N
)  e.  CC )
9190adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  X  e.  NN )  ->  ( log `  N )  e.  CC )
9246rpred 11039 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( log `  M
)  e.  RR )
9392recnd 9424 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( log `  M
)  e.  CC )
9493adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  X  e.  NN )  ->  ( log `  M )  e.  CC )
9546adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  X  e.  NN )  ->  ( log `  M )  e.  RR+ )
9695rpne0d 11044 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  X  e.  NN )  ->  ( log `  M )  =/=  0
)
9788, 91, 94, 96divassd 10154 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( X  x.  ( log `  N ) )  / 
( log `  M
) )  =  ( X  x.  ( ( log `  N )  /  ( log `  M
) ) ) )
9840oveq2i 6114 . . . . . . . . . . . . . . 15  |-  ( X  x.  U )  =  ( X  x.  (
( log `  N
)  /  ( log `  M ) ) )
9997, 98syl6eqr 2493 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( X  x.  ( log `  N ) )  / 
( log `  M
) )  =  ( X  x.  U ) )
10099oveq1d 6118 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( ( X  x.  ( log `  N ) )  /  ( log `  M
) )  x.  ( log `  M ) )  =  ( ( X  x.  U )  x.  ( log `  M
) ) )
10188, 91mulcld 9418 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  e.  NN )  ->  ( X  x.  ( log `  N
) )  e.  CC )
102101, 94, 96divcan1d 10120 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( ( X  x.  ( log `  N ) )  /  ( log `  M
) )  x.  ( log `  M ) )  =  ( X  x.  ( log `  N ) ) )
103100, 102eqtr3d 2477 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( X  x.  U )  x.  ( log `  M
) )  =  ( X  x.  ( log `  N ) ) )
104 flltp1 11662 . . . . . . . . . . . . . 14  |-  ( ( X  x.  U )  e.  RR  ->  ( X  x.  U )  <  ( ( |_ `  ( X  x.  U
) )  +  1 ) )
10564, 104syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  NN )  ->  ( X  x.  U )  < 
( ( |_ `  ( X  x.  U
) )  +  1 ) )
10664, 73, 95, 105ltmul1dd 11090 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( X  x.  U )  x.  ( log `  M
) )  <  (
( ( |_ `  ( X  x.  U
) )  +  1 )  x.  ( log `  M ) ) )
107103, 106eqbrtrrd 4326 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  ( X  x.  ( log `  N
) )  <  (
( ( |_ `  ( X  x.  U
) )  +  1 )  x.  ( log `  M ) ) )
10889adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  NN )  ->  ( log `  N )  e.  RR )
10963, 108remulcld 9426 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  NN )  ->  ( X  x.  ( log `  N
) )  e.  RR )
11092adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  NN )  ->  ( log `  M )  e.  RR )
11173, 110remulcld 9426 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( ( |_ `  ( X  x.  U )
)  +  1 )  x.  ( log `  M
) )  e.  RR )
112 eflt 13413 . . . . . . . . . . . 12  |-  ( ( ( X  x.  ( log `  N ) )  e.  RR  /\  (
( ( |_ `  ( X  x.  U
) )  +  1 )  x.  ( log `  M ) )  e.  RR )  ->  (
( X  x.  ( log `  N ) )  <  ( ( ( |_ `  ( X  x.  U ) )  +  1 )  x.  ( log `  M
) )  <->  ( exp `  ( X  x.  ( log `  N ) ) )  <  ( exp `  ( ( ( |_
`  ( X  x.  U ) )  +  1 )  x.  ( log `  M ) ) ) ) )
113109, 111, 112syl2anc 661 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( X  x.  ( log `  N ) )  < 
( ( ( |_
`  ( X  x.  U ) )  +  1 )  x.  ( log `  M ) )  <-> 
( exp `  ( X  x.  ( log `  N ) ) )  <  ( exp `  (
( ( |_ `  ( X  x.  U
) )  +  1 )  x.  ( log `  M ) ) ) ) )
114107, 113mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( exp `  ( X  x.  ( log `  N ) ) )  <  ( exp `  ( ( ( |_
`  ( X  x.  U ) )  +  1 )  x.  ( log `  M ) ) ) )
1155nnrpd 11038 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  RR+ )
116 nnz 10680 . . . . . . . . . . 11  |-  ( X  e.  NN  ->  X  e.  ZZ )
117 reexplog 22055 . . . . . . . . . . 11  |-  ( ( N  e.  RR+  /\  X  e.  ZZ )  ->  ( N ^ X )  =  ( exp `  ( X  x.  ( log `  N ) ) ) )
118115, 116, 117syl2an 477 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( N ^ X )  =  ( exp `  ( X  x.  ( log `  N ) ) ) )
11960nnrpd 11038 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  M  e.  RR+ )
12072nn0zd 10757 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( |_ `  ( X  x.  U ) )  +  1 )  e.  ZZ )
121 reexplog 22055 . . . . . . . . . . 11  |-  ( ( M  e.  RR+  /\  (
( |_ `  ( X  x.  U )
)  +  1 )  e.  ZZ )  -> 
( M ^ (
( |_ `  ( X  x.  U )
)  +  1 ) )  =  ( exp `  ( ( ( |_
`  ( X  x.  U ) )  +  1 )  x.  ( log `  M ) ) ) )
122119, 120, 121syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( M ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) )  =  ( exp `  (
( ( |_ `  ( X  x.  U
) )  +  1 )  x.  ( log `  M ) ) ) )
123114, 118, 1223brtr4d 4334 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  NN )  ->  ( N ^ X )  < 
( M ^ (
( |_ `  ( X  x.  U )
)  +  1 ) ) )
124 nnexpcl 11890 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  X  e.  NN0 )  -> 
( N ^ X
)  e.  NN )
1255, 55, 124syl2an 477 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( N ^ X )  e.  NN )
12660, 72nnexpcld 12041 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( M ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) )  e.  NN )
127 nnltlem1 10721 . . . . . . . . . 10  |-  ( ( ( N ^ X
)  e.  NN  /\  ( M ^ ( ( |_ `  ( X  x.  U ) )  +  1 ) )  e.  NN )  -> 
( ( N ^ X )  <  ( M ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) )  <->  ( N ^ X )  <_  (
( M ^ (
( |_ `  ( X  x.  U )
)  +  1 ) )  -  1 ) ) )
128125, 126, 127syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( N ^ X )  <  ( M ^
( ( |_ `  ( X  x.  U
) )  +  1 ) )  <->  ( N ^ X )  <_  (
( M ^ (
( |_ `  ( X  x.  U )
)  +  1 ) )  -  1 ) ) )
129123, 128mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  X  e.  NN )  ->  ( N ^ X )  <_ 
( ( M ^
( ( |_ `  ( X  x.  U
) )  +  1 ) )  -  1 ) )
130125nnnn0d 10648 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( N ^ X )  e. 
NN0 )
131 nn0uz 10907 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
132130, 131syl6eleq 2533 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  NN )  ->  ( N ^ X )  e.  ( ZZ>= `  0 )
)
133126nnzd 10758 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( M ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) )  e.  ZZ )
134 peano2zm 10700 . . . . . . . . . 10  |-  ( ( M ^ ( ( |_ `  ( X  x.  U ) )  +  1 ) )  e.  ZZ  ->  (
( M ^ (
( |_ `  ( X  x.  U )
)  +  1 ) )  -  1 )  e.  ZZ )
135133, 134syl 16 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( M ^ ( ( |_ `  ( X  x.  U ) )  +  1 ) )  -  1 )  e.  ZZ )
136 elfz5 11457 . . . . . . . . 9  |-  ( ( ( N ^ X
)  e.  ( ZZ>= ` 
0 )  /\  (
( M ^ (
( |_ `  ( X  x.  U )
)  +  1 ) )  -  1 )  e.  ZZ )  -> 
( ( N ^ X )  e.  ( 0 ... ( ( M ^ ( ( |_ `  ( X  x.  U ) )  +  1 ) )  -  1 ) )  <-> 
( N ^ X
)  <_  ( ( M ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) )  - 
1 ) ) )
137132, 135, 136syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( N ^ X )  e.  ( 0 ... ( ( M ^
( ( |_ `  ( X  x.  U
) )  +  1 ) )  -  1 ) )  <->  ( N ^ X )  <_  (
( M ^ (
( |_ `  ( X  x.  U )
)  +  1 ) )  -  1 ) ) )
138129, 137mpbird 232 . . . . . . 7  |-  ( (
ph  /\  X  e.  NN )  ->  ( N ^ X )  e.  ( 0 ... (
( M ^ (
( |_ `  ( X  x.  U )
)  +  1 ) )  -  1 ) ) )
139 padic.j . . . . . . . . . 10  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
140 ostth.k . . . . . . . . . 10  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
141 ostth2.3 . . . . . . . . . 10  |-  ( ph  ->  1  <  ( F `
 N ) )
142 ostth2.4 . . . . . . . . . 10  |-  R  =  ( ( log `  ( F `  N )
)  /  ( log `  N ) )
143 ostth2.6 . . . . . . . . . 10  |-  S  =  ( ( log `  ( F `  M )
)  /  ( log `  M ) )
1449, 8, 139, 140, 1, 2, 141, 142, 17, 143, 15ostth2lem2 22895 . . . . . . . . 9  |-  ( (
ph  /\  ( ( |_ `  ( X  x.  U ) )  +  1 )  e.  NN0  /\  ( N ^ X
)  e.  ( 0 ... ( ( M ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) )  - 
1 ) ) )  ->  ( F `  ( N ^ X ) )  <_  ( ( M  x.  ( ( |_ `  ( X  x.  U ) )  +  1 ) )  x.  ( T ^ (
( |_ `  ( X  x.  U )
)  +  1 ) ) ) )
1451443expia 1189 . . . . . . . 8  |-  ( (
ph  /\  ( ( |_ `  ( X  x.  U ) )  +  1 )  e.  NN0 )  ->  ( ( N ^ X )  e.  ( 0 ... (
( M ^ (
( |_ `  ( X  x.  U )
)  +  1 ) )  -  1 ) )  ->  ( F `  ( N ^ X
) )  <_  (
( M  x.  (
( |_ `  ( X  x.  U )
)  +  1 ) )  x.  ( T ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) ) ) ) )
14672, 145syldan 470 . . . . . . 7  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( N ^ X )  e.  ( 0 ... ( ( M ^
( ( |_ `  ( X  x.  U
) )  +  1 ) )  -  1 ) )  ->  ( F `  ( N ^ X ) )  <_ 
( ( M  x.  ( ( |_ `  ( X  x.  U
) )  +  1 ) )  x.  ( T ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) ) ) ) )
147138, 146mpd 15 . . . . . 6  |-  ( (
ph  /\  X  e.  NN )  ->  ( F `
 ( N ^ X ) )  <_ 
( ( M  x.  ( ( |_ `  ( X  x.  U
) )  +  1 ) )  x.  ( T ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) ) ) )
14887, 147eqbrtrrd 4326 . . . . 5  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( F `  N ) ^ X )  <_ 
( ( M  x.  ( ( |_ `  ( X  x.  U
) )  +  1 ) )  x.  ( T ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) ) ) )
14980, 75remulcld 9426 . . . . . 6  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( M  x.  ( X  x.  ( U  + 
1 ) ) )  x.  ( T ^
( ( |_ `  ( X  x.  U
) )  +  1 ) ) )  e.  RR )
150 peano2re 9554 . . . . . . . . . 10  |-  ( ( X  x.  U )  e.  RR  ->  (
( X  x.  U
)  +  1 )  e.  RR )
15164, 150syl 16 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( X  x.  U )  +  1 )  e.  RR )
15270nn0red 10649 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( |_
`  ( X  x.  U ) )  e.  RR )
153 1red 9413 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  1  e.  RR )
154 flle 11661 . . . . . . . . . . 11  |-  ( ( X  x.  U )  e.  RR  ->  ( |_ `  ( X  x.  U ) )  <_ 
( X  x.  U
) )
15564, 154syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( |_
`  ( X  x.  U ) )  <_ 
( X  x.  U
) )
156152, 64, 153, 155leadd1dd 9965 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( |_ `  ( X  x.  U ) )  +  1 )  <_ 
( ( X  x.  U )  +  1 ) )
157 nnge1 10360 . . . . . . . . . . . 12  |-  ( X  e.  NN  ->  1  <_  X )
158157adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  1  <_  X )
159153, 63, 64, 158leadd2dd 9966 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( X  x.  U )  +  1 )  <_ 
( ( X  x.  U )  +  X
) )
16050recnd 9424 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  NN )  ->  U  e.  CC )
161153recnd 9424 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  NN )  ->  1  e.  CC )
16288, 160, 161adddid 9422 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  ( X  x.  ( U  + 
1 ) )  =  ( ( X  x.  U )  +  ( X  x.  1 ) ) )
16388mulid1d 9415 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  NN )  ->  ( X  x.  1 )  =  X )
164163oveq2d 6119 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( X  x.  U )  +  ( X  x.  1 ) )  =  ( ( X  x.  U )  +  X
) )
165162, 164eqtrd 2475 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( X  x.  ( U  + 
1 ) )  =  ( ( X  x.  U )  +  X
) )
166159, 165breqtrrd 4330 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( X  x.  U )  +  1 )  <_ 
( X  x.  ( U  +  1 ) ) )
16773, 151, 79, 156, 166letrd 9540 . . . . . . . 8  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( |_ `  ( X  x.  U ) )  +  1 )  <_ 
( X  x.  ( U  +  1 ) ) )
16860nngt0d 10377 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  NN )  ->  0  < 
M )
169 lemul2 10194 . . . . . . . . 9  |-  ( ( ( ( |_ `  ( X  x.  U
) )  +  1 )  e.  RR  /\  ( X  x.  ( U  +  1 ) )  e.  RR  /\  ( M  e.  RR  /\  0  <  M ) )  ->  ( (
( |_ `  ( X  x.  U )
)  +  1 )  <_  ( X  x.  ( U  +  1
) )  <->  ( M  x.  ( ( |_ `  ( X  x.  U
) )  +  1 ) )  <_  ( M  x.  ( X  x.  ( U  +  1 ) ) ) ) )
17073, 79, 61, 168, 169syl112anc 1222 . . . . . . . 8  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( ( |_ `  ( X  x.  U )
)  +  1 )  <_  ( X  x.  ( U  +  1
) )  <->  ( M  x.  ( ( |_ `  ( X  x.  U
) )  +  1 ) )  <_  ( M  x.  ( X  x.  ( U  +  1 ) ) ) ) )
171167, 170mpbid 210 . . . . . . 7  |-  ( (
ph  /\  X  e.  NN )  ->  ( M  x.  ( ( |_
`  ( X  x.  U ) )  +  1 ) )  <_ 
( M  x.  ( X  x.  ( U  +  1 ) ) ) )
172 expgt0 11909 . . . . . . . . 9  |-  ( ( T  e.  RR  /\  ( ( |_ `  ( X  x.  U
) )  +  1 )  e.  ZZ  /\  0  <  T )  -> 
0  <  ( T ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) ) )
17328, 120, 37, 172syl3anc 1218 . . . . . . . 8  |-  ( (
ph  /\  X  e.  NN )  ->  0  < 
( T ^ (
( |_ `  ( X  x.  U )
)  +  1 ) ) )
174 lemul1 10193 . . . . . . . 8  |-  ( ( ( M  x.  (
( |_ `  ( X  x.  U )
)  +  1 ) )  e.  RR  /\  ( M  x.  ( X  x.  ( U  +  1 ) ) )  e.  RR  /\  ( ( T ^
( ( |_ `  ( X  x.  U
) )  +  1 ) )  e.  RR  /\  0  <  ( T ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) ) ) )  ->  ( ( M  x.  ( ( |_ `  ( X  x.  U ) )  +  1 ) )  <_ 
( M  x.  ( X  x.  ( U  +  1 ) ) )  <->  ( ( M  x.  ( ( |_
`  ( X  x.  U ) )  +  1 ) )  x.  ( T ^ (
( |_ `  ( X  x.  U )
)  +  1 ) ) )  <_  (
( M  x.  ( X  x.  ( U  +  1 ) ) )  x.  ( T ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) ) ) ) )
17574, 80, 75, 173, 174syl112anc 1222 . . . . . . 7  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( M  x.  ( ( |_ `  ( X  x.  U ) )  +  1 ) )  <_  ( M  x.  ( X  x.  ( U  +  1 ) ) )  <->  ( ( M  x.  ( ( |_ `  ( X  x.  U ) )  +  1 ) )  x.  ( T ^ (
( |_ `  ( X  x.  U )
)  +  1 ) ) )  <_  (
( M  x.  ( X  x.  ( U  +  1 ) ) )  x.  ( T ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) ) ) ) )
176171, 175mpbid 210 . . . . . 6  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( M  x.  ( ( |_ `  ( X  x.  U ) )  +  1 ) )  x.  ( T ^
( ( |_ `  ( X  x.  U
) )  +  1 ) ) )  <_ 
( ( M  x.  ( X  x.  ( U  +  1 ) ) )  x.  ( T ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) ) ) )
17728recnd 9424 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  NN )  ->  T  e.  CC )
178177, 70expp1d 12021 . . . . . . . 8  |-  ( (
ph  /\  X  e.  NN )  ->  ( T ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) )  =  ( ( T ^
( |_ `  ( X  x.  U )
) )  x.  T
) )
17935adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  1  <_  T )
180 remulcl 9379 . . . . . . . . . . . 12  |-  ( ( U  e.  RR  /\  X  e.  RR )  ->  ( U  x.  X
)  e.  RR )
18149, 62, 180syl2an 477 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  ( U  x.  X )  e.  RR )
18288, 160mulcomd 9419 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  NN )  ->  ( X  x.  U )  =  ( U  x.  X
) )
183155, 182breqtrd 4328 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  ( |_
`  ( X  x.  U ) )  <_ 
( U  x.  X
) )
18428, 179, 152, 181, 183cxplead 22178 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( T  ^c  ( |_
`  ( X  x.  U ) ) )  <_  ( T  ^c  ( U  x.  X ) ) )
185 cxpexp 22125 . . . . . . . . . . 11  |-  ( ( T  e.  CC  /\  ( |_ `  ( X  x.  U ) )  e.  NN0 )  -> 
( T  ^c 
( |_ `  ( X  x.  U )
) )  =  ( T ^ ( |_
`  ( X  x.  U ) ) ) )
186177, 70, 185syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( T  ^c  ( |_
`  ( X  x.  U ) ) )  =  ( T ^
( |_ `  ( X  x.  U )
) ) )
18738, 50, 88cxpmuld 22191 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  ( T  ^c  ( U  x.  X ) )  =  ( ( T  ^c  U )  ^c  X ) )
188 cxpexp 22125 . . . . . . . . . . . 12  |-  ( ( ( T  ^c  U )  e.  CC  /\  X  e.  NN0 )  ->  ( ( T  ^c  U )  ^c  X )  =  ( ( T  ^c  U ) ^ X
) )
18952, 56, 188syl2anc 661 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( T  ^c  U )  ^c  X )  =  ( ( T  ^c  U ) ^ X ) )
190187, 189eqtrd 2475 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( T  ^c  ( U  x.  X ) )  =  ( ( T  ^c  U ) ^ X ) )
191184, 186, 1903brtr3d 4333 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  NN )  ->  ( T ^ ( |_ `  ( X  x.  U
) ) )  <_ 
( ( T  ^c  U ) ^ X
) )
19228, 70reexpcld 12037 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  ( T ^ ( |_ `  ( X  x.  U
) ) )  e.  RR )
193192, 81, 38lemul1d 11078 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( T ^ ( |_
`  ( X  x.  U ) ) )  <_  ( ( T  ^c  U ) ^ X )  <->  ( ( T ^ ( |_ `  ( X  x.  U
) ) )  x.  T )  <_  (
( ( T  ^c  U ) ^ X
)  x.  T ) ) )
194191, 193mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( T ^ ( |_
`  ( X  x.  U ) ) )  x.  T )  <_ 
( ( ( T  ^c  U ) ^ X )  x.  T ) )
195178, 194eqbrtrd 4324 . . . . . . 7  |-  ( (
ph  /\  X  e.  NN )  ->  ( T ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) )  <_ 
( ( ( T  ^c  U ) ^ X )  x.  T ) )
196 nngt0 10363 . . . . . . . . . . 11  |-  ( X  e.  NN  ->  0  <  X )
197196adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  0  < 
X )
198 0red 9399 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  0  e.  RR )
19948adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  NN )  ->  U  e.  RR+ )
200199rpgt0d 11042 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  0  < 
U )
20150ltp1d 10275 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  NN )  ->  U  < 
( U  +  1 ) )
202198, 50, 78, 200, 201lttrd 9544 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  NN )  ->  0  < 
( U  +  1 ) )
20363, 78, 197, 202mulgt0d 9538 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  NN )  ->  0  < 
( X  x.  ( U  +  1 ) ) )
20461, 79, 168, 203mulgt0d 9538 . . . . . . . 8  |-  ( (
ph  /\  X  e.  NN )  ->  0  < 
( M  x.  ( X  x.  ( U  +  1 ) ) ) )
205 lemul2 10194 . . . . . . . 8  |-  ( ( ( T ^ (
( |_ `  ( X  x.  U )
)  +  1 ) )  e.  RR  /\  ( ( ( T  ^c  U ) ^ X )  x.  T )  e.  RR  /\  ( ( M  x.  ( X  x.  ( U  +  1 ) ) )  e.  RR  /\  0  <  ( M  x.  ( X  x.  ( U  +  1
) ) ) ) )  ->  ( ( T ^ ( ( |_
`  ( X  x.  U ) )  +  1 ) )  <_ 
( ( ( T  ^c  U ) ^ X )  x.  T )  <->  ( ( M  x.  ( X  x.  ( U  +  1 ) ) )  x.  ( T ^ (
( |_ `  ( X  x.  U )
)  +  1 ) ) )  <_  (
( M  x.  ( X  x.  ( U  +  1 ) ) )  x.  ( ( ( T  ^c  U ) ^ X
)  x.  T ) ) ) )
20675, 82, 80, 204, 205syl112anc 1222 . . . . . . 7  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( T ^ ( ( |_ `  ( X  x.  U ) )  +  1 ) )  <_  ( ( ( T  ^c  U ) ^ X )  x.  T )  <->  ( ( M  x.  ( X  x.  ( U  +  1 ) ) )  x.  ( T ^ (
( |_ `  ( X  x.  U )
)  +  1 ) ) )  <_  (
( M  x.  ( X  x.  ( U  +  1 ) ) )  x.  ( ( ( T  ^c  U ) ^ X
)  x.  T ) ) ) )
207195, 206mpbid 210 . . . . . 6  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( M  x.  ( X  x.  ( U  + 
1 ) ) )  x.  ( T ^
( ( |_ `  ( X  x.  U
) )  +  1 ) ) )  <_ 
( ( M  x.  ( X  x.  ( U  +  1 ) ) )  x.  (
( ( T  ^c  U ) ^ X
)  x.  T ) ) )
20876, 149, 83, 176, 207letrd 9540 . . . . 5  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( M  x.  ( ( |_ `  ( X  x.  U ) )  +  1 ) )  x.  ( T ^
( ( |_ `  ( X  x.  U
) )  +  1 ) ) )  <_ 
( ( M  x.  ( X  x.  ( U  +  1 ) ) )  x.  (
( ( T  ^c  U ) ^ X
)  x.  T ) ) )
20959, 76, 83, 148, 208letrd 9540 . . . 4  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( F `  N ) ^ X )  <_ 
( ( M  x.  ( X  x.  ( U  +  1 ) ) )  x.  (
( ( T  ^c  U ) ^ X
)  x.  T ) ) )
21080recnd 9424 . . . . . 6  |-  ( (
ph  /\  X  e.  NN )  ->  ( M  x.  ( X  x.  ( U  +  1
) ) )  e.  CC )
21181recnd 9424 . . . . . 6  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( T  ^c  U ) ^ X )  e.  CC )
212210, 211, 177mul12d 9590 . . . . 5  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( M  x.  ( X  x.  ( U  + 
1 ) ) )  x.  ( ( ( T  ^c  U ) ^ X )  x.  T ) )  =  ( ( ( T  ^c  U ) ^ X )  x.  ( ( M  x.  ( X  x.  ( U  +  1
) ) )  x.  T ) ) )
21361recnd 9424 . . . . . . . 8  |-  ( (
ph  /\  X  e.  NN )  ->  M  e.  CC )
21479recnd 9424 . . . . . . . 8  |-  ( (
ph  /\  X  e.  NN )  ->  ( X  x.  ( U  + 
1 ) )  e.  CC )
215213, 214, 177mul32d 9591 . . . . . . 7  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( M  x.  ( X  x.  ( U  + 
1 ) ) )  x.  T )  =  ( ( M  x.  T )  x.  ( X  x.  ( U  +  1 ) ) ) )
216213, 177mulcld 9418 . . . . . . . 8  |-  ( (
ph  /\  X  e.  NN )  ->  ( M  x.  T )  e.  CC )
21778recnd 9424 . . . . . . . 8  |-  ( (
ph  /\  X  e.  NN )  ->  ( U  +  1 )  e.  CC )
218216, 88, 217mul12d 9590 . . . . . . 7  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( M  x.  T )  x.  ( X  x.  ( U  +  1
) ) )  =  ( X  x.  (
( M  x.  T
)  x.  ( U  +  1 ) ) ) )
219215, 218eqtrd 2475 . . . . . 6  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( M  x.  ( X  x.  ( U  + 
1 ) ) )  x.  T )  =  ( X  x.  (
( M  x.  T
)  x.  ( U  +  1 ) ) ) )
220219oveq2d 6119 . . . . 5  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( ( T  ^c  U ) ^ X
)  x.  ( ( M  x.  ( X  x.  ( U  + 
1 ) ) )  x.  T ) )  =  ( ( ( T  ^c  U ) ^ X )  x.  ( X  x.  ( ( M  x.  T )  x.  ( U  +  1 ) ) ) ) )
221212, 220eqtrd 2475 . . . 4  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( M  x.  ( X  x.  ( U  + 
1 ) ) )  x.  ( ( ( T  ^c  U ) ^ X )  x.  T ) )  =  ( ( ( T  ^c  U ) ^ X )  x.  ( X  x.  ( ( M  x.  T )  x.  ( U  +  1 ) ) ) ) )
222209, 221breqtrd 4328 . . 3  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( F `  N ) ^ X )  <_ 
( ( ( T  ^c  U ) ^ X )  x.  ( X  x.  (
( M  x.  T
)  x.  ( U  +  1 ) ) ) ) )
22361, 28remulcld 9426 . . . . . 6  |-  ( (
ph  /\  X  e.  NN )  ->  ( M  x.  T )  e.  RR )
224223, 78remulcld 9426 . . . . 5  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( M  x.  T )  x.  ( U  + 
1 ) )  e.  RR )
22563, 224remulcld 9426 . . . 4  |-  ( (
ph  /\  X  e.  NN )  ->  ( X  x.  ( ( M  x.  T )  x.  ( U  +  1 ) ) )  e.  RR )
226116adantl 466 . . . . 5  |-  ( (
ph  /\  X  e.  NN )  ->  X  e.  ZZ )
22753, 226rpexpcld 12043 . . . 4  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( T  ^c  U ) ^ X )  e.  RR+ )
22859, 225, 227ledivmuld 11088 . . 3  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( ( ( F `  N ) ^ X
)  /  ( ( T  ^c  U ) ^ X ) )  <_  ( X  x.  ( ( M  x.  T )  x.  ( U  +  1 ) ) )  <->  ( ( F `  N ) ^ X )  <_  (
( ( T  ^c  U ) ^ X
)  x.  ( X  x.  ( ( M  x.  T )  x.  ( U  +  1 ) ) ) ) ) )
229222, 228mpbird 232 . 2  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( ( F `  N
) ^ X )  /  ( ( T  ^c  U ) ^ X ) )  <_  ( X  x.  ( ( M  x.  T )  x.  ( U  +  1 ) ) ) )
23057, 229eqbrtrd 4324 1  |-  ( (
ph  /\  X  e.  NN )  ->  ( ( ( F `  N
)  /  ( T  ^c  U ) ) ^ X )  <_  ( X  x.  ( ( M  x.  T )  x.  ( U  +  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   ifcif 3803   class class class wbr 4304    e. cmpt 4362   ` cfv 5430  (class class class)co 6103   CCcc 9292   RRcr 9293   0cc0 9294   1c1 9295    + caddc 9297    x. cmul 9299    < clt 9430    <_ cle 9431    - cmin 9607   -ucneg 9608    / cdiv 10005   NNcn 10334   2c2 10383   NN0cn0 10591   ZZcz 10658   ZZ>=cuz 10873   QQcq 10965   RR+crp 11003   ...cfz 11449   |_cfl 11652   ^cexp 11877   expce 13359   Primecprime 13775    pCnt cpc 13915   ↾s cress 14187  AbsValcabv 16913  ℂfldccnfld 17830   logclog 22018    ^c ccxp 22019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372  ax-addf 9373  ax-mulf 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-of 6332  df-om 6489  df-1st 6589  df-2nd 6590  df-supp 6703  df-tpos 6757  df-recs 6844  df-rdg 6878  df-1o 6932  df-2o 6933  df-oadd 6936  df-er 7113  df-map 7228  df-pm 7229  df-ixp 7276  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-fsupp 7633  df-fi 7673  df-sup 7703  df-oi 7736  df-card 8121  df-cda 8349  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-7 10397  df-8 10398  df-9 10399  df-10 10400  df-n0 10592  df-z 10659  df-dec 10768  df-uz 10874  df-q 10966  df-rp 11004  df-xneg 11101  df-xadd 11102  df-xmul 11103  df-ioo 11316  df-ioc 11317  df-ico 11318  df-icc 11319  df-fz 11450  df-fzo 11561  df-fl 11654  df-mod 11721  df-seq 11819  df-exp 11878  df-fac 12064  df-bc 12091  df-hash 12116  df-shft 12568  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-limsup 12961  df-clim 12978  df-rlim 12979  df-sum 13176  df-ef 13365  df-sin 13367  df-cos 13368  df-pi 13370  df-struct 14188  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-ress 14193  df-plusg 14263  df-mulr 14264  df-starv 14265  df-sca 14266  df-vsca 14267  df-ip 14268  df-tset 14269  df-ple 14270  df-ds 14272  df-unif 14273  df-hom 14274  df-cco 14275  df-rest 14373  df-topn 14374  df-0g 14392  df-gsum 14393  df-topgen 14394  df-pt 14395  df-prds 14398  df-xrs 14452  df-qtop 14457  df-imas 14458  df-xps 14460  df-mre 14536  df-mrc 14537  df-acs 14539  df-mnd 15427  df-submnd 15477  df-grp 15557  df-minusg 15558  df-mulg 15560  df-subg 15690  df-cntz 15847  df-cmn 16291  df-mgp 16604  df-ur 16616  df-rng 16659  df-cring 16660  df-oppr 16727  df-dvdsr 16745  df-unit 16746  df-invr 16776  df-dvr 16787  df-drng 16846  df-subrg 16875  df-abv 16914  df-psmet 17821  df-xmet 17822  df-met 17823  df-bl 17824  df-mopn 17825  df-fbas 17826  df-fg 17827  df-cnfld 17831  df-top 18515  df-bases 18517  df-topon 18518  df-topsp 18519  df-cld 18635  df-ntr 18636  df-cls 18637  df-nei 18714  df-lp 18752  df-perf 18753  df-cn 18843  df-cnp 18844  df-haus 18931  df-tx 19147  df-hmeo 19340  df-fil 19431  df-fm 19523  df-flim 19524  df-flf 19525  df-xms 19907  df-ms 19908  df-tms 19909  df-cncf 20466  df-limc 21353  df-dv 21354  df-log 22020  df-cxp 22021
This theorem is referenced by:  ostth2lem4  22897
  Copyright terms: Public domain W3C validator