MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2lem2 Structured version   Unicode version

Theorem ostth2lem2 23563
Description: Lemma for ostth2 23566. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
ostth.k  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
ostth.1  |-  ( ph  ->  F  e.  A )
ostth2.2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
ostth2.3  |-  ( ph  ->  1  <  ( F `
 N ) )
ostth2.4  |-  R  =  ( ( log `  ( F `  N )
)  /  ( log `  N ) )
ostth2.5  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
ostth2.6  |-  S  =  ( ( log `  ( F `  M )
)  /  ( log `  M ) )
ostth2.7  |-  T  =  if ( ( F `
 M )  <_ 
1 ,  1 ,  ( F `  M
) )
Assertion
Ref Expression
ostth2lem2  |-  ( (
ph  /\  X  e.  NN0 
/\  Y  e.  ( 0 ... ( ( M ^ X )  -  1 ) ) )  ->  ( F `  Y )  <_  (
( M  x.  X
)  x.  ( T ^ X ) ) )
Distinct variable groups:    x, M    x, q, ph    x, T    x, X    A, q, x    x, N    x, Q    F, q    R, q    x, F
Allowed substitution hints:    Q( q)    R( x)    S( x, q)    T( q)    J( x, q)    K( x, q)    M( q)    N( q)    X( q)    Y( x, q)

Proof of Theorem ostth2lem2
Dummy variables  k  n  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6291 . . . . . . . . 9  |-  ( x  =  0  ->  ( M ^ x )  =  ( M ^ 0 ) )
21oveq1d 6298 . . . . . . . 8  |-  ( x  =  0  ->  (
( M ^ x
)  -  1 )  =  ( ( M ^ 0 )  - 
1 ) )
32oveq2d 6299 . . . . . . 7  |-  ( x  =  0  ->  (
0 ... ( ( M ^ x )  - 
1 ) )  =  ( 0 ... (
( M ^ 0 )  -  1 ) ) )
4 oveq2 6291 . . . . . . . . 9  |-  ( x  =  0  ->  ( M  x.  x )  =  ( M  x.  0 ) )
5 oveq2 6291 . . . . . . . . 9  |-  ( x  =  0  ->  ( T ^ x )  =  ( T ^ 0 ) )
64, 5oveq12d 6301 . . . . . . . 8  |-  ( x  =  0  ->  (
( M  x.  x
)  x.  ( T ^ x ) )  =  ( ( M  x.  0 )  x.  ( T ^ 0 ) ) )
76breq2d 4459 . . . . . . 7  |-  ( x  =  0  ->  (
( F `  k
)  <_  ( ( M  x.  x )  x.  ( T ^ x
) )  <->  ( F `  k )  <_  (
( M  x.  0 )  x.  ( T ^ 0 ) ) ) )
83, 7raleqbidv 3072 . . . . . 6  |-  ( x  =  0  ->  ( A. k  e.  (
0 ... ( ( M ^ x )  - 
1 ) ) ( F `  k )  <_  ( ( M  x.  x )  x.  ( T ^ x
) )  <->  A. k  e.  ( 0 ... (
( M ^ 0 )  -  1 ) ) ( F `  k )  <_  (
( M  x.  0 )  x.  ( T ^ 0 ) ) ) )
98imbi2d 316 . . . . 5  |-  ( x  =  0  ->  (
( ph  ->  A. k  e.  ( 0 ... (
( M ^ x
)  -  1 ) ) ( F `  k )  <_  (
( M  x.  x
)  x.  ( T ^ x ) ) )  <->  ( ph  ->  A. k  e.  ( 0 ... ( ( M ^ 0 )  - 
1 ) ) ( F `  k )  <_  ( ( M  x.  0 )  x.  ( T ^ 0 ) ) ) ) )
10 oveq2 6291 . . . . . . . . 9  |-  ( x  =  n  ->  ( M ^ x )  =  ( M ^ n
) )
1110oveq1d 6298 . . . . . . . 8  |-  ( x  =  n  ->  (
( M ^ x
)  -  1 )  =  ( ( M ^ n )  - 
1 ) )
1211oveq2d 6299 . . . . . . 7  |-  ( x  =  n  ->  (
0 ... ( ( M ^ x )  - 
1 ) )  =  ( 0 ... (
( M ^ n
)  -  1 ) ) )
13 oveq2 6291 . . . . . . . . 9  |-  ( x  =  n  ->  ( M  x.  x )  =  ( M  x.  n ) )
14 oveq2 6291 . . . . . . . . 9  |-  ( x  =  n  ->  ( T ^ x )  =  ( T ^ n
) )
1513, 14oveq12d 6301 . . . . . . . 8  |-  ( x  =  n  ->  (
( M  x.  x
)  x.  ( T ^ x ) )  =  ( ( M  x.  n )  x.  ( T ^ n
) ) )
1615breq2d 4459 . . . . . . 7  |-  ( x  =  n  ->  (
( F `  k
)  <_  ( ( M  x.  x )  x.  ( T ^ x
) )  <->  ( F `  k )  <_  (
( M  x.  n
)  x.  ( T ^ n ) ) ) )
1712, 16raleqbidv 3072 . . . . . 6  |-  ( x  =  n  ->  ( A. k  e.  (
0 ... ( ( M ^ x )  - 
1 ) ) ( F `  k )  <_  ( ( M  x.  x )  x.  ( T ^ x
) )  <->  A. k  e.  ( 0 ... (
( M ^ n
)  -  1 ) ) ( F `  k )  <_  (
( M  x.  n
)  x.  ( T ^ n ) ) ) )
1817imbi2d 316 . . . . 5  |-  ( x  =  n  ->  (
( ph  ->  A. k  e.  ( 0 ... (
( M ^ x
)  -  1 ) ) ( F `  k )  <_  (
( M  x.  x
)  x.  ( T ^ x ) ) )  <->  ( ph  ->  A. k  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  k )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) ) )
19 oveq2 6291 . . . . . . . . 9  |-  ( x  =  ( n  + 
1 )  ->  ( M ^ x )  =  ( M ^ (
n  +  1 ) ) )
2019oveq1d 6298 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  (
( M ^ x
)  -  1 )  =  ( ( M ^ ( n  + 
1 ) )  - 
1 ) )
2120oveq2d 6299 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (
0 ... ( ( M ^ x )  - 
1 ) )  =  ( 0 ... (
( M ^ (
n  +  1 ) )  -  1 ) ) )
22 oveq2 6291 . . . . . . . . 9  |-  ( x  =  ( n  + 
1 )  ->  ( M  x.  x )  =  ( M  x.  ( n  +  1
) ) )
23 oveq2 6291 . . . . . . . . 9  |-  ( x  =  ( n  + 
1 )  ->  ( T ^ x )  =  ( T ^ (
n  +  1 ) ) )
2422, 23oveq12d 6301 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  (
( M  x.  x
)  x.  ( T ^ x ) )  =  ( ( M  x.  ( n  + 
1 ) )  x.  ( T ^ (
n  +  1 ) ) ) )
2524breq2d 4459 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  k
)  <_  ( ( M  x.  x )  x.  ( T ^ x
) )  <->  ( F `  k )  <_  (
( M  x.  (
n  +  1 ) )  x.  ( T ^ ( n  + 
1 ) ) ) ) )
2621, 25raleqbidv 3072 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  ( A. k  e.  (
0 ... ( ( M ^ x )  - 
1 ) ) ( F `  k )  <_  ( ( M  x.  x )  x.  ( T ^ x
) )  <->  A. k  e.  ( 0 ... (
( M ^ (
n  +  1 ) )  -  1 ) ) ( F `  k )  <_  (
( M  x.  (
n  +  1 ) )  x.  ( T ^ ( n  + 
1 ) ) ) ) )
2726imbi2d 316 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  A. k  e.  ( 0 ... (
( M ^ x
)  -  1 ) ) ( F `  k )  <_  (
( M  x.  x
)  x.  ( T ^ x ) ) )  <->  ( ph  ->  A. k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) ) ( F `  k )  <_  ( ( M  x.  ( n  + 
1 ) )  x.  ( T ^ (
n  +  1 ) ) ) ) ) )
28 oveq2 6291 . . . . . . . . 9  |-  ( x  =  X  ->  ( M ^ x )  =  ( M ^ X
) )
2928oveq1d 6298 . . . . . . . 8  |-  ( x  =  X  ->  (
( M ^ x
)  -  1 )  =  ( ( M ^ X )  - 
1 ) )
3029oveq2d 6299 . . . . . . 7  |-  ( x  =  X  ->  (
0 ... ( ( M ^ x )  - 
1 ) )  =  ( 0 ... (
( M ^ X
)  -  1 ) ) )
31 oveq2 6291 . . . . . . . . 9  |-  ( x  =  X  ->  ( M  x.  x )  =  ( M  x.  X ) )
32 oveq2 6291 . . . . . . . . 9  |-  ( x  =  X  ->  ( T ^ x )  =  ( T ^ X
) )
3331, 32oveq12d 6301 . . . . . . . 8  |-  ( x  =  X  ->  (
( M  x.  x
)  x.  ( T ^ x ) )  =  ( ( M  x.  X )  x.  ( T ^ X
) ) )
3433breq2d 4459 . . . . . . 7  |-  ( x  =  X  ->  (
( F `  k
)  <_  ( ( M  x.  x )  x.  ( T ^ x
) )  <->  ( F `  k )  <_  (
( M  x.  X
)  x.  ( T ^ X ) ) ) )
3530, 34raleqbidv 3072 . . . . . 6  |-  ( x  =  X  ->  ( A. k  e.  (
0 ... ( ( M ^ x )  - 
1 ) ) ( F `  k )  <_  ( ( M  x.  x )  x.  ( T ^ x
) )  <->  A. k  e.  ( 0 ... (
( M ^ X
)  -  1 ) ) ( F `  k )  <_  (
( M  x.  X
)  x.  ( T ^ X ) ) ) )
3635imbi2d 316 . . . . 5  |-  ( x  =  X  ->  (
( ph  ->  A. k  e.  ( 0 ... (
( M ^ x
)  -  1 ) ) ( F `  k )  <_  (
( M  x.  x
)  x.  ( T ^ x ) ) )  <->  ( ph  ->  A. k  e.  ( 0 ... ( ( M ^ X )  - 
1 ) ) ( F `  k )  <_  ( ( M  x.  X )  x.  ( T ^ X
) ) ) ) )
37 ostth2.5 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
38 eluz2b2 11153 . . . . . . . . . . . . . . 15  |-  ( M  e.  ( ZZ>= `  2
)  <->  ( M  e.  NN  /\  1  < 
M ) )
3938simplbi 460 . . . . . . . . . . . . . 14  |-  ( M  e.  ( ZZ>= `  2
)  ->  M  e.  NN )
4037, 39syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  NN )
4140nncnd 10551 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  CC )
4241exp0d 12271 . . . . . . . . . . 11  |-  ( ph  ->  ( M ^ 0 )  =  1 )
4342oveq1d 6298 . . . . . . . . . 10  |-  ( ph  ->  ( ( M ^
0 )  -  1 )  =  ( 1  -  1 ) )
44 1m1e0 10603 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
4543, 44syl6eq 2524 . . . . . . . . 9  |-  ( ph  ->  ( ( M ^
0 )  -  1 )  =  0 )
4645oveq2d 6299 . . . . . . . 8  |-  ( ph  ->  ( 0 ... (
( M ^ 0 )  -  1 ) )  =  ( 0 ... 0 ) )
4746eleq2d 2537 . . . . . . 7  |-  ( ph  ->  ( k  e.  ( 0 ... ( ( M ^ 0 )  -  1 ) )  <-> 
k  e.  ( 0 ... 0 ) ) )
48 0le0 10624 . . . . . . . . . 10  |-  0  <_  0
4948a1i 11 . . . . . . . . 9  |-  ( ph  ->  0  <_  0 )
50 ostth.1 . . . . . . . . . 10  |-  ( ph  ->  F  e.  A )
51 qabsabv.a . . . . . . . . . . 11  |-  A  =  (AbsVal `  Q )
52 qrng.q . . . . . . . . . . . 12  |-  Q  =  (flds  QQ )
5352qrng0 23550 . . . . . . . . . . 11  |-  0  =  ( 0g `  Q )
5451, 53abv0 17275 . . . . . . . . . 10  |-  ( F  e.  A  ->  ( F `  0 )  =  0 )
5550, 54syl 16 . . . . . . . . 9  |-  ( ph  ->  ( F `  0
)  =  0 )
5641mul01d 9777 . . . . . . . . . . 11  |-  ( ph  ->  ( M  x.  0 )  =  0 )
5756oveq1d 6298 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  x.  0 )  x.  ( T ^ 0 ) )  =  ( 0  x.  ( T ^ 0 ) ) )
58 ostth2.7 . . . . . . . . . . . . . 14  |-  T  =  if ( ( F `
 M )  <_ 
1 ,  1 ,  ( F `  M
) )
59 1re 9594 . . . . . . . . . . . . . . 15  |-  1  e.  RR
60 nnq 11194 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN  ->  M  e.  QQ )
6140, 60syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  QQ )
6252qrngbas 23548 . . . . . . . . . . . . . . . . 17  |-  QQ  =  ( Base `  Q )
6351, 62abvcl 17268 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  M
)  e.  RR )
6450, 61, 63syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F `  M
)  e.  RR )
65 ifcl 3981 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( F `  M )  e.  RR )  ->  if ( ( F `  M )  <_  1 ,  1 ,  ( F `  M ) )  e.  RR )
6659, 64, 65sylancr 663 . . . . . . . . . . . . . 14  |-  ( ph  ->  if ( ( F `
 M )  <_ 
1 ,  1 ,  ( F `  M
) )  e.  RR )
6758, 66syl5eqel 2559 . . . . . . . . . . . . 13  |-  ( ph  ->  T  e.  RR )
6867recnd 9621 . . . . . . . . . . . 12  |-  ( ph  ->  T  e.  CC )
69 0nn0 10809 . . . . . . . . . . . 12  |-  0  e.  NN0
70 expcl 12151 . . . . . . . . . . . 12  |-  ( ( T  e.  CC  /\  0  e.  NN0 )  -> 
( T ^ 0 )  e.  CC )
7168, 69, 70sylancl 662 . . . . . . . . . . 11  |-  ( ph  ->  ( T ^ 0 )  e.  CC )
7271mul02d 9776 . . . . . . . . . 10  |-  ( ph  ->  ( 0  x.  ( T ^ 0 ) )  =  0 )
7357, 72eqtrd 2508 . . . . . . . . 9  |-  ( ph  ->  ( ( M  x.  0 )  x.  ( T ^ 0 ) )  =  0 )
7449, 55, 733brtr4d 4477 . . . . . . . 8  |-  ( ph  ->  ( F `  0
)  <_  ( ( M  x.  0 )  x.  ( T ^
0 ) ) )
75 elfz1eq 11696 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... 0 )  ->  k  =  0 )
7675fveq2d 5869 . . . . . . . . 9  |-  ( k  e.  ( 0 ... 0 )  ->  ( F `  k )  =  ( F ` 
0 ) )
7776breq1d 4457 . . . . . . . 8  |-  ( k  e.  ( 0 ... 0 )  ->  (
( F `  k
)  <_  ( ( M  x.  0 )  x.  ( T ^
0 ) )  <->  ( F `  0 )  <_ 
( ( M  x.  0 )  x.  ( T ^ 0 ) ) ) )
7874, 77syl5ibrcom 222 . . . . . . 7  |-  ( ph  ->  ( k  e.  ( 0 ... 0 )  ->  ( F `  k )  <_  (
( M  x.  0 )  x.  ( T ^ 0 ) ) ) )
7947, 78sylbid 215 . . . . . 6  |-  ( ph  ->  ( k  e.  ( 0 ... ( ( M ^ 0 )  -  1 ) )  ->  ( F `  k )  <_  (
( M  x.  0 )  x.  ( T ^ 0 ) ) ) )
8079ralrimiv 2876 . . . . 5  |-  ( ph  ->  A. k  e.  ( 0 ... ( ( M ^ 0 )  -  1 ) ) ( F `  k
)  <_  ( ( M  x.  0 )  x.  ( T ^
0 ) ) )
81 fveq2 5865 . . . . . . . . . 10  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
8281breq1d 4457 . . . . . . . . 9  |-  ( k  =  j  ->  (
( F `  k
)  <_  ( ( M  x.  n )  x.  ( T ^ n
) )  <->  ( F `  j )  <_  (
( M  x.  n
)  x.  ( T ^ n ) ) ) )
8382cbvralv 3088 . . . . . . . 8  |-  ( A. k  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  k )  <_  ( ( M  x.  n )  x.  ( T ^ n
) )  <->  A. j  e.  ( 0 ... (
( M ^ n
)  -  1 ) ) ( F `  j )  <_  (
( M  x.  n
)  x.  ( T ^ n ) ) )
8450ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  F  e.  A
)
85 elfzelz 11687 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... ( ( M ^
( n  +  1 ) )  -  1 ) )  ->  k  e.  ZZ )
8685ad2antrl 727 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  k  e.  ZZ )
87 zq 11187 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  k  e.  QQ )
8886, 87syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  k  e.  QQ )
8951, 62abvcl 17268 . . . . . . . . . . . 12  |-  ( ( F  e.  A  /\  k  e.  QQ )  ->  ( F `  k
)  e.  RR )
9084, 88, 89syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  k )  e.  RR )
9140ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  M  e.  NN )
92 simplr 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  n  e.  NN0 )
9391, 92nnexpcld 12298 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M ^
n )  e.  NN )
9486, 93zmodcld 11983 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( k  mod  ( M ^ n
) )  e.  NN0 )
9594nn0zd 10963 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( k  mod  ( M ^ n
) )  e.  ZZ )
96 zq 11187 . . . . . . . . . . . . . 14  |-  ( ( k  mod  ( M ^ n ) )  e.  ZZ  ->  (
k  mod  ( M ^ n ) )  e.  QQ )
9795, 96syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( k  mod  ( M ^ n
) )  e.  QQ )
9851, 62abvcl 17268 . . . . . . . . . . . . 13  |-  ( ( F  e.  A  /\  ( k  mod  ( M ^ n ) )  e.  QQ )  -> 
( F `  (
k  mod  ( M ^ n ) ) )  e.  RR )
9984, 97, 98syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  ( k  mod  ( M ^ n ) ) )  e.  RR )
10091, 60syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  M  e.  QQ )
10184, 100, 63syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  M )  e.  RR )
102101, 92reexpcld 12294 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( F `
 M ) ^
n )  e.  RR )
10386zred 10965 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  k  e.  RR )
104103, 93nndivred 10583 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( k  / 
( M ^ n
) )  e.  RR )
105104flcld 11902 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( |_ `  ( k  /  ( M ^ n ) ) )  e.  ZZ )
106 zq 11187 . . . . . . . . . . . . . . 15  |-  ( ( |_ `  ( k  /  ( M ^
n ) ) )  e.  ZZ  ->  ( |_ `  ( k  / 
( M ^ n
) ) )  e.  QQ )
107105, 106syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( |_ `  ( k  /  ( M ^ n ) ) )  e.  QQ )
10851, 62abvcl 17268 . . . . . . . . . . . . . 14  |-  ( ( F  e.  A  /\  ( |_ `  ( k  /  ( M ^
n ) ) )  e.  QQ )  -> 
( F `  ( |_ `  ( k  / 
( M ^ n
) ) ) )  e.  RR )
10984, 107, 108syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  ( |_ `  ( k  /  ( M ^
n ) ) ) )  e.  RR )
110102, 109remulcld 9623 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( ( F `  M ) ^ n )  x.  ( F `  ( |_ `  ( k  / 
( M ^ n
) ) ) ) )  e.  RR )
11199, 110readdcld 9622 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( F `
 ( k  mod  ( M ^ n
) ) )  +  ( ( ( F `
 M ) ^
n )  x.  ( F `  ( |_ `  ( k  /  ( M ^ n ) ) ) ) ) )  e.  RR )
11291nnred 10550 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  M  e.  RR )
113 nn0p1nn 10834 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN0  ->  ( n  +  1 )  e.  NN )
114113ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( n  + 
1 )  e.  NN )
115114nnred 10550 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( n  + 
1 )  e.  RR )
116112, 115remulcld 9623 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M  x.  ( n  +  1
) )  e.  RR )
11767ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  T  e.  RR )
118 peano2nn0 10835 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  ->  ( n  +  1 )  e. 
NN0 )
119118ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( n  + 
1 )  e.  NN0 )
120117, 119reexpcld 12294 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( T ^
( n  +  1 ) )  e.  RR )
121116, 120remulcld 9623 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( M  x.  ( n  + 
1 ) )  x.  ( T ^ (
n  +  1 ) ) )  e.  RR )
122 nnq 11194 . . . . . . . . . . . . . . 15  |-  ( ( M ^ n )  e.  NN  ->  ( M ^ n )  e.  QQ )
12393, 122syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M ^
n )  e.  QQ )
124 qmulcl 11199 . . . . . . . . . . . . . 14  |-  ( ( ( M ^ n
)  e.  QQ  /\  ( |_ `  ( k  /  ( M ^
n ) ) )  e.  QQ )  -> 
( ( M ^
n )  x.  ( |_ `  ( k  / 
( M ^ n
) ) ) )  e.  QQ )
125123, 107, 124syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( M ^ n )  x.  ( |_ `  (
k  /  ( M ^ n ) ) ) )  e.  QQ )
126 qex 11193 . . . . . . . . . . . . . . 15  |-  QQ  e.  _V
127 cnfldadd 18212 . . . . . . . . . . . . . . . 16  |-  +  =  ( +g  ` fld )
12852, 127ressplusg 14596 . . . . . . . . . . . . . . 15  |-  ( QQ  e.  _V  ->  +  =  ( +g  `  Q
) )
129126, 128ax-mp 5 . . . . . . . . . . . . . 14  |-  +  =  ( +g  `  Q )
13051, 62, 129abvtri 17274 . . . . . . . . . . . . 13  |-  ( ( F  e.  A  /\  ( k  mod  ( M ^ n ) )  e.  QQ  /\  (
( M ^ n
)  x.  ( |_
`  ( k  / 
( M ^ n
) ) ) )  e.  QQ )  -> 
( F `  (
( k  mod  ( M ^ n ) )  +  ( ( M ^ n )  x.  ( |_ `  (
k  /  ( M ^ n ) ) ) ) ) )  <_  ( ( F `
 ( k  mod  ( M ^ n
) ) )  +  ( F `  (
( M ^ n
)  x.  ( |_
`  ( k  / 
( M ^ n
) ) ) ) ) ) )
13184, 97, 125, 130syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  ( ( k  mod  ( M ^ n
) )  +  ( ( M ^ n
)  x.  ( |_
`  ( k  / 
( M ^ n
) ) ) ) ) )  <_  (
( F `  (
k  mod  ( M ^ n ) ) )  +  ( F `
 ( ( M ^ n )  x.  ( |_ `  (
k  /  ( M ^ n ) ) ) ) ) ) )
13293nnrpd 11254 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M ^
n )  e.  RR+ )
133 modval 11965 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  RR  /\  ( M ^ n )  e.  RR+ )  ->  (
k  mod  ( M ^ n ) )  =  ( k  -  ( ( M ^
n )  x.  ( |_ `  ( k  / 
( M ^ n
) ) ) ) ) )
134103, 132, 133syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( k  mod  ( M ^ n
) )  =  ( k  -  ( ( M ^ n )  x.  ( |_ `  ( k  /  ( M ^ n ) ) ) ) ) )
135134oveq1d 6298 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( k  mod  ( M ^
n ) )  +  ( ( M ^
n )  x.  ( |_ `  ( k  / 
( M ^ n
) ) ) ) )  =  ( ( k  -  ( ( M ^ n )  x.  ( |_ `  ( k  /  ( M ^ n ) ) ) ) )  +  ( ( M ^
n )  x.  ( |_ `  ( k  / 
( M ^ n
) ) ) ) ) )
136103recnd 9621 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  k  e.  CC )
137 qcn 11195 . . . . . . . . . . . . . . . 16  |-  ( ( ( M ^ n
)  x.  ( |_
`  ( k  / 
( M ^ n
) ) ) )  e.  QQ  ->  (
( M ^ n
)  x.  ( |_
`  ( k  / 
( M ^ n
) ) ) )  e.  CC )
138125, 137syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( M ^ n )  x.  ( |_ `  (
k  /  ( M ^ n ) ) ) )  e.  CC )
139136, 138npcand 9933 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( k  -  ( ( M ^ n )  x.  ( |_ `  (
k  /  ( M ^ n ) ) ) ) )  +  ( ( M ^
n )  x.  ( |_ `  ( k  / 
( M ^ n
) ) ) ) )  =  k )
140135, 139eqtrd 2508 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( k  mod  ( M ^
n ) )  +  ( ( M ^
n )  x.  ( |_ `  ( k  / 
( M ^ n
) ) ) ) )  =  k )
141140fveq2d 5869 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  ( ( k  mod  ( M ^ n
) )  +  ( ( M ^ n
)  x.  ( |_
`  ( k  / 
( M ^ n
) ) ) ) ) )  =  ( F `  k ) )
142 cnfldmul 18213 . . . . . . . . . . . . . . . . . 18  |-  x.  =  ( .r ` fld )
14352, 142ressmulr 14607 . . . . . . . . . . . . . . . . 17  |-  ( QQ  e.  _V  ->  x.  =  ( .r `  Q ) )
144126, 143ax-mp 5 . . . . . . . . . . . . . . . 16  |-  x.  =  ( .r `  Q )
14551, 62, 144abvmul 17273 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  A  /\  ( M ^ n )  e.  QQ  /\  ( |_ `  ( k  / 
( M ^ n
) ) )  e.  QQ )  ->  ( F `  ( ( M ^ n )  x.  ( |_ `  (
k  /  ( M ^ n ) ) ) ) )  =  ( ( F `  ( M ^ n ) )  x.  ( F `
 ( |_ `  ( k  /  ( M ^ n ) ) ) ) ) )
14684, 123, 107, 145syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  ( ( M ^
n )  x.  ( |_ `  ( k  / 
( M ^ n
) ) ) ) )  =  ( ( F `  ( M ^ n ) )  x.  ( F `  ( |_ `  ( k  /  ( M ^
n ) ) ) ) ) )
14752, 51qabvexp 23555 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  A  /\  M  e.  QQ  /\  n  e.  NN0 )  ->  ( F `  ( M ^ n ) )  =  ( ( F `
 M ) ^
n ) )
14884, 100, 92, 147syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  ( M ^ n ) )  =  ( ( F `  M ) ^ n ) )
149148oveq1d 6298 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( F `
 ( M ^
n ) )  x.  ( F `  ( |_ `  ( k  / 
( M ^ n
) ) ) ) )  =  ( ( ( F `  M
) ^ n )  x.  ( F `  ( |_ `  ( k  /  ( M ^
n ) ) ) ) ) )
150146, 149eqtrd 2508 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  ( ( M ^
n )  x.  ( |_ `  ( k  / 
( M ^ n
) ) ) ) )  =  ( ( ( F `  M
) ^ n )  x.  ( F `  ( |_ `  ( k  /  ( M ^
n ) ) ) ) ) )
151150oveq2d 6299 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( F `
 ( k  mod  ( M ^ n
) ) )  +  ( F `  (
( M ^ n
)  x.  ( |_
`  ( k  / 
( M ^ n
) ) ) ) ) )  =  ( ( F `  (
k  mod  ( M ^ n ) ) )  +  ( ( ( F `  M
) ^ n )  x.  ( F `  ( |_ `  ( k  /  ( M ^
n ) ) ) ) ) ) )
152131, 141, 1513brtr3d 4476 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  k )  <_  (
( F `  (
k  mod  ( M ^ n ) ) )  +  ( ( ( F `  M
) ^ n )  x.  ( F `  ( |_ `  ( k  /  ( M ^
n ) ) ) ) ) ) )
153117, 92reexpcld 12294 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( T ^
n )  e.  RR )
154116, 153remulcld 9623 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( M  x.  ( n  + 
1 ) )  x.  ( T ^ n
) )  e.  RR )
155 nn0re 10803 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN0  ->  n  e.  RR )
156155ad2antlr 726 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  n  e.  RR )
157112, 156remulcld 9623 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M  x.  n )  e.  RR )
158157, 153remulcld 9623 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( M  x.  n )  x.  ( T ^ n
) )  e.  RR )
159112, 153remulcld 9623 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M  x.  ( T ^ n ) )  e.  RR )
160 zmodfz 11984 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  ZZ  /\  ( M ^ n )  e.  NN )  -> 
( k  mod  ( M ^ n ) )  e.  ( 0 ... ( ( M ^
n )  -  1 ) ) )
16186, 93, 160syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( k  mod  ( M ^ n
) )  e.  ( 0 ... ( ( M ^ n )  -  1 ) ) )
162 simprr 756 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  A. j  e.  ( 0 ... ( ( M ^ n )  -  1 ) ) ( F `  j
)  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) )
163 fveq2 5865 . . . . . . . . . . . . . . . . 17  |-  ( j  =  ( k  mod  ( M ^ n
) )  ->  ( F `  j )  =  ( F `  ( k  mod  ( M ^ n ) ) ) )
164163breq1d 4457 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( k  mod  ( M ^ n
) )  ->  (
( F `  j
)  <_  ( ( M  x.  n )  x.  ( T ^ n
) )  <->  ( F `  ( k  mod  ( M ^ n ) ) )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )
165164rspcv 3210 . . . . . . . . . . . . . . 15  |-  ( ( k  mod  ( M ^ n ) )  e.  ( 0 ... ( ( M ^
n )  -  1 ) )  ->  ( A. j  e.  (
0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) )  ->  ( F `  ( k  mod  ( M ^ n
) ) )  <_ 
( ( M  x.  n )  x.  ( T ^ n ) ) ) )
166161, 162, 165sylc 60 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  ( k  mod  ( M ^ n ) ) )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) )
167112, 102remulcld 9623 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M  x.  ( ( F `  M ) ^ n
) )  e.  RR )
168102recnd 9621 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( F `
 M ) ^
n )  e.  CC )
169109recnd 9621 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  ( |_ `  ( k  /  ( M ^
n ) ) ) )  e.  CC )
170168, 169mulcomd 9616 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( ( F `  M ) ^ n )  x.  ( F `  ( |_ `  ( k  / 
( M ^ n
) ) ) ) )  =  ( ( F `  ( |_
`  ( k  / 
( M ^ n
) ) ) )  x.  ( ( F `
 M ) ^
n ) ) )
17151, 62abvge0 17269 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  e.  A  /\  M  e.  QQ )  ->  0  <_  ( F `  M ) )
17284, 100, 171syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  0  <_  ( F `  M )
)
173101, 92, 172expge0d 12295 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  0  <_  (
( F `  M
) ^ n ) )
174105zred 10965 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( |_ `  ( k  /  ( M ^ n ) ) )  e.  RR )
175 elfzle1 11688 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ( 0 ... ( ( M ^
( n  +  1 ) )  -  1 ) )  ->  0  <_  k )
176175ad2antrl 727 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  0  <_  k
)
17793nnred 10550 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M ^
n )  e.  RR )
17893nngt0d 10578 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  0  <  ( M ^ n ) )
179 divge0 10410 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( k  e.  RR  /\  0  <_  k )  /\  ( ( M ^
n )  e.  RR  /\  0  <  ( M ^ n ) ) )  ->  0  <_  ( k  /  ( M ^ n ) ) )
180103, 176, 177, 178, 179syl22anc 1229 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  0  <_  (
k  /  ( M ^ n ) ) )
181 flge0nn0 11921 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( k  /  ( M ^ n ) )  e.  RR  /\  0  <_  ( k  /  ( M ^ n ) ) )  ->  ( |_ `  ( k  /  ( M ^ n ) ) )  e.  NN0 )
182104, 180, 181syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( |_ `  ( k  /  ( M ^ n ) ) )  e.  NN0 )
18352, 51qabvle 23554 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  e.  A  /\  ( |_ `  ( k  /  ( M ^
n ) ) )  e.  NN0 )  -> 
( F `  ( |_ `  ( k  / 
( M ^ n
) ) ) )  <_  ( |_ `  ( k  /  ( M ^ n ) ) ) )
18484, 182, 183syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  ( |_ `  ( k  /  ( M ^
n ) ) ) )  <_  ( |_ `  ( k  /  ( M ^ n ) ) ) )
185 simprl 755 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  k  e.  ( 0 ... ( ( M ^ ( n  +  1 ) )  -  1 ) ) )
186 0z 10874 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  0  e.  ZZ
18791, 119nnexpcld 12298 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M ^
( n  +  1 ) )  e.  NN )
188187nnzd 10964 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M ^
( n  +  1 ) )  e.  ZZ )
189 elfzm11 11748 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 0  e.  ZZ  /\  ( M ^ ( n  +  1 ) )  e.  ZZ )  -> 
( k  e.  ( 0 ... ( ( M ^ ( n  +  1 ) )  -  1 ) )  <-> 
( k  e.  ZZ  /\  0  <_  k  /\  k  <  ( M ^
( n  +  1 ) ) ) ) )
190186, 188, 189sylancr 663 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( k  e.  ( 0 ... (
( M ^ (
n  +  1 ) )  -  1 ) )  <->  ( k  e.  ZZ  /\  0  <_ 
k  /\  k  <  ( M ^ ( n  +  1 ) ) ) ) )
191185, 190mpbid 210 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( k  e.  ZZ  /\  0  <_ 
k  /\  k  <  ( M ^ ( n  +  1 ) ) ) )
192191simp3d 1010 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  k  <  ( M ^ ( n  + 
1 ) ) )
19391nncnd 10551 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  M  e.  CC )
194193, 92expp1d 12278 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M ^
( n  +  1 ) )  =  ( ( M ^ n
)  x.  M ) )
195192, 194breqtrd 4471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  k  <  (
( M ^ n
)  x.  M ) )
196 ltdivmul 10416 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( k  e.  RR  /\  M  e.  RR  /\  (
( M ^ n
)  e.  RR  /\  0  <  ( M ^
n ) ) )  ->  ( ( k  /  ( M ^
n ) )  < 
M  <->  k  <  (
( M ^ n
)  x.  M ) ) )
197103, 112, 177, 178, 196syl112anc 1232 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( k  /  ( M ^
n ) )  < 
M  <->  k  <  (
( M ^ n
)  x.  M ) ) )
198195, 197mpbird 232 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( k  / 
( M ^ n
) )  <  M
)
19991nnzd 10964 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  M  e.  ZZ )
200 fllt 11910 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( k  /  ( M ^ n ) )  e.  RR  /\  M  e.  ZZ )  ->  (
( k  /  ( M ^ n ) )  <  M  <->  ( |_ `  ( k  /  ( M ^ n ) ) )  <  M ) )
201104, 199, 200syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( k  /  ( M ^
n ) )  < 
M  <->  ( |_ `  ( k  /  ( M ^ n ) ) )  <  M ) )
202198, 201mpbid 210 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( |_ `  ( k  /  ( M ^ n ) ) )  <  M )
203174, 112, 202ltled 9731 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( |_ `  ( k  /  ( M ^ n ) ) )  <_  M )
204109, 174, 112, 184, 203letrd 9737 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  ( |_ `  ( k  /  ( M ^
n ) ) ) )  <_  M )
205109, 112, 102, 173, 204lemul1ad 10484 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( F `
 ( |_ `  ( k  /  ( M ^ n ) ) ) )  x.  (
( F `  M
) ^ n ) )  <_  ( M  x.  ( ( F `  M ) ^ n
) ) )
206170, 205eqbrtrd 4467 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( ( F `  M ) ^ n )  x.  ( F `  ( |_ `  ( k  / 
( M ^ n
) ) ) ) )  <_  ( M  x.  ( ( F `  M ) ^ n
) ) )
20791nnnn0d 10851 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  M  e.  NN0 )
208207nn0ge0d 10854 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  0  <_  M
)
209 max1 11385 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F `  M
)  e.  RR  /\  1  e.  RR )  ->  ( F `  M
)  <_  if (
( F `  M
)  <_  1 , 
1 ,  ( F `
 M ) ) )
210101, 59, 209sylancl 662 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  M )  <_  if ( ( F `  M )  <_  1 ,  1 ,  ( F `  M ) ) )
211210, 58syl6breqr 4487 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  M )  <_  T
)
212 leexp1a 12191 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F `  M )  e.  RR  /\  T  e.  RR  /\  n  e.  NN0 )  /\  ( 0  <_  ( F `  M )  /\  ( F `  M
)  <_  T )
)  ->  ( ( F `  M ) ^ n )  <_ 
( T ^ n
) )
213101, 117, 92, 172, 211, 212syl32anc 1236 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( F `
 M ) ^
n )  <_  ( T ^ n ) )
214102, 153, 112, 208, 213lemul2ad 10485 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M  x.  ( ( F `  M ) ^ n
) )  <_  ( M  x.  ( T ^ n ) ) )
215110, 167, 159, 206, 214letrd 9737 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( ( F `  M ) ^ n )  x.  ( F `  ( |_ `  ( k  / 
( M ^ n
) ) ) ) )  <_  ( M  x.  ( T ^ n
) ) )
21699, 110, 158, 159, 166, 215le2addd 10169 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( F `
 ( k  mod  ( M ^ n
) ) )  +  ( ( ( F `
 M ) ^
n )  x.  ( F `  ( |_ `  ( k  /  ( M ^ n ) ) ) ) ) )  <_  ( ( ( M  x.  n )  x.  ( T ^
n ) )  +  ( M  x.  ( T ^ n ) ) ) )
217 nn0cn 10804 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN0  ->  n  e.  CC )
218217ad2antlr 726 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  n  e.  CC )
219 ax-1cn 9549 . . . . . . . . . . . . . . . . . 18  |-  1  e.  CC
220219a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  1  e.  CC )
221193, 218, 220adddid 9619 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M  x.  ( n  +  1
) )  =  ( ( M  x.  n
)  +  ( M  x.  1 ) ) )
222193mulid1d 9612 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M  x.  1 )  =  M )
223222oveq2d 6299 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( M  x.  n )  +  ( M  x.  1 ) )  =  ( ( M  x.  n
)  +  M ) )
224221, 223eqtrd 2508 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M  x.  ( n  +  1
) )  =  ( ( M  x.  n
)  +  M ) )
225224oveq1d 6298 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( M  x.  ( n  + 
1 ) )  x.  ( T ^ n
) )  =  ( ( ( M  x.  n )  +  M
)  x.  ( T ^ n ) ) )
226193, 218mulcld 9615 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M  x.  n )  e.  CC )
227153recnd 9621 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( T ^
n )  e.  CC )
228226, 193, 227adddird 9620 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( ( M  x.  n )  +  M )  x.  ( T ^ n
) )  =  ( ( ( M  x.  n )  x.  ( T ^ n ) )  +  ( M  x.  ( T ^ n ) ) ) )
229225, 228eqtrd 2508 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( M  x.  ( n  + 
1 ) )  x.  ( T ^ n
) )  =  ( ( ( M  x.  n )  x.  ( T ^ n ) )  +  ( M  x.  ( T ^ n ) ) ) )
230216, 229breqtrrd 4473 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( F `
 ( k  mod  ( M ^ n
) ) )  +  ( ( ( F `
 M ) ^
n )  x.  ( F `  ( |_ `  ( k  /  ( M ^ n ) ) ) ) ) )  <_  ( ( M  x.  ( n  + 
1 ) )  x.  ( T ^ n
) ) )
231 max2 11387 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  M
)  e.  RR  /\  1  e.  RR )  ->  1  <_  if (
( F `  M
)  <_  1 , 
1 ,  ( F `
 M ) ) )
232101, 59, 231sylancl 662 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  1  <_  if ( ( F `  M )  <_  1 ,  1 ,  ( F `  M ) ) )
233232, 58syl6breqr 4487 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  1  <_  T
)
234 nn0z 10886 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN0  ->  n  e.  ZZ )
235234ad2antlr 726 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  n  e.  ZZ )
236 uzid 11095 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ZZ  ->  n  e.  ( ZZ>= `  n )
)
237235, 236syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  n  e.  (
ZZ>= `  n ) )
238 peano2uz 11133 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ZZ>= `  n
)  ->  ( n  +  1 )  e.  ( ZZ>= `  n )
)
239237, 238syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( n  + 
1 )  e.  (
ZZ>= `  n ) )
240117, 233, 239leexp2ad 12309 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( T ^
n )  <_  ( T ^ ( n  + 
1 ) ) )
24191, 114nnmulcld 10582 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( M  x.  ( n  +  1
) )  e.  NN )
242241nngt0d 10578 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  0  <  ( M  x.  ( n  +  1 ) ) )
243 lemul2 10394 . . . . . . . . . . . . . 14  |-  ( ( ( T ^ n
)  e.  RR  /\  ( T ^ ( n  +  1 ) )  e.  RR  /\  (
( M  x.  (
n  +  1 ) )  e.  RR  /\  0  <  ( M  x.  ( n  +  1
) ) ) )  ->  ( ( T ^ n )  <_ 
( T ^ (
n  +  1 ) )  <->  ( ( M  x.  ( n  + 
1 ) )  x.  ( T ^ n
) )  <_  (
( M  x.  (
n  +  1 ) )  x.  ( T ^ ( n  + 
1 ) ) ) ) )
244153, 120, 116, 242, 243syl112anc 1232 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( T ^ n )  <_ 
( T ^ (
n  +  1 ) )  <->  ( ( M  x.  ( n  + 
1 ) )  x.  ( T ^ n
) )  <_  (
( M  x.  (
n  +  1 ) )  x.  ( T ^ ( n  + 
1 ) ) ) ) )
245240, 244mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( M  x.  ( n  + 
1 ) )  x.  ( T ^ n
) )  <_  (
( M  x.  (
n  +  1 ) )  x.  ( T ^ ( n  + 
1 ) ) ) )
246111, 154, 121, 230, 245letrd 9737 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( ( F `
 ( k  mod  ( M ^ n
) ) )  +  ( ( ( F `
 M ) ^
n )  x.  ( F `  ( |_ `  ( k  /  ( M ^ n ) ) ) ) ) )  <_  ( ( M  x.  ( n  + 
1 ) )  x.  ( T ^ (
n  +  1 ) ) ) )
24790, 111, 121, 152, 246letrd 9737 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  (
k  e.  ( 0 ... ( ( M ^ ( n  + 
1 ) )  - 
1 ) )  /\  A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) ) )  ->  ( F `  k )  <_  (
( M  x.  (
n  +  1 ) )  x.  ( T ^ ( n  + 
1 ) ) ) )
248247expr 615 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  k  e.  ( 0 ... (
( M ^ (
n  +  1 ) )  -  1 ) ) )  ->  ( A. j  e.  (
0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) )  ->  ( F `  k )  <_  ( ( M  x.  ( n  +  1
) )  x.  ( T ^ ( n  + 
1 ) ) ) ) )
249248ralrimdva 2882 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( A. j  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  j )  <_  ( ( M  x.  n )  x.  ( T ^ n
) )  ->  A. k  e.  ( 0 ... (
( M ^ (
n  +  1 ) )  -  1 ) ) ( F `  k )  <_  (
( M  x.  (
n  +  1 ) )  x.  ( T ^ ( n  + 
1 ) ) ) ) )
25083, 249syl5bi 217 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( A. k  e.  ( 0 ... ( ( M ^ n )  - 
1 ) ) ( F `  k )  <_  ( ( M  x.  n )  x.  ( T ^ n
) )  ->  A. k  e.  ( 0 ... (
( M ^ (
n  +  1 ) )  -  1 ) ) ( F `  k )  <_  (
( M  x.  (
n  +  1 ) )  x.  ( T ^ ( n  + 
1 ) ) ) ) )
251250expcom 435 . . . . . 6  |-  ( n  e.  NN0  ->  ( ph  ->  ( A. k  e.  ( 0 ... (
( M ^ n
)  -  1 ) ) ( F `  k )  <_  (
( M  x.  n
)  x.  ( T ^ n ) )  ->  A. k  e.  ( 0 ... ( ( M ^ ( n  +  1 ) )  -  1 ) ) ( F `  k
)  <_  ( ( M  x.  ( n  +  1 ) )  x.  ( T ^
( n  +  1 ) ) ) ) ) )
252251a2d 26 . . . . 5  |-  ( n  e.  NN0  ->  ( (
ph  ->  A. k  e.  ( 0 ... ( ( M ^ n )  -  1 ) ) ( F `  k
)  <_  ( ( M  x.  n )  x.  ( T ^ n
) ) )  -> 
( ph  ->  A. k  e.  ( 0 ... (
( M ^ (
n  +  1 ) )  -  1 ) ) ( F `  k )  <_  (
( M  x.  (
n  +  1 ) )  x.  ( T ^ ( n  + 
1 ) ) ) ) ) )
2539, 18, 27, 36, 80, 252nn0ind 10956 . . . 4  |-  ( X  e.  NN0  ->  ( ph  ->  A. k  e.  ( 0 ... ( ( M ^ X )  -  1 ) ) ( F `  k
)  <_  ( ( M  x.  X )  x.  ( T ^ X
) ) ) )
254253impcom 430 . . 3  |-  ( (
ph  /\  X  e.  NN0 )  ->  A. k  e.  ( 0 ... (
( M ^ X
)  -  1 ) ) ( F `  k )  <_  (
( M  x.  X
)  x.  ( T ^ X ) ) )
255 fveq2 5865 . . . . 5  |-  ( k  =  Y  ->  ( F `  k )  =  ( F `  Y ) )
256255breq1d 4457 . . . 4  |-  ( k  =  Y  ->  (
( F `  k
)  <_  ( ( M  x.  X )  x.  ( T ^ X
) )  <->  ( F `  Y )  <_  (
( M  x.  X
)  x.  ( T ^ X ) ) ) )
257256rspccv 3211 . . 3  |-  ( A. k  e.  ( 0 ... ( ( M ^ X )  - 
1 ) ) ( F `  k )  <_  ( ( M  x.  X )  x.  ( T ^ X
) )  ->  ( Y  e.  ( 0 ... ( ( M ^ X )  - 
1 ) )  -> 
( F `  Y
)  <_  ( ( M  x.  X )  x.  ( T ^ X
) ) ) )
258254, 257syl 16 . 2  |-  ( (
ph  /\  X  e.  NN0 )  ->  ( Y  e.  ( 0 ... (
( M ^ X
)  -  1 ) )  ->  ( F `  Y )  <_  (
( M  x.  X
)  x.  ( T ^ X ) ) ) )
2592583impia 1193 1  |-  ( (
ph  /\  X  e.  NN0 
/\  Y  e.  ( 0 ... ( ( M ^ X )  -  1 ) ) )  ->  ( F `  Y )  <_  (
( M  x.  X
)  x.  ( T ^ X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113   ifcif 3939   class class class wbr 4447    |-> cmpt 4505   ` cfv 5587  (class class class)co 6283   CCcc 9489   RRcr 9490   0cc0 9491   1c1 9492    + caddc 9494    x. cmul 9496    < clt 9627    <_ cle 9628    - cmin 9804   -ucneg 9805    / cdiv 10205   NNcn 10535   2c2 10584   NN0cn0 10794   ZZcz 10863   ZZ>=cuz 11081   QQcq 11181   RR+crp 11219   ...cfz 11671   |_cfl 11894    mod cmo 11963   ^cexp 12133   Primecprime 14075    pCnt cpc 14218   ↾s cress 14490   +g cplusg 14554   .rcmulr 14555  AbsValcabv 17260  ℂfldccnfld 18207   logclog 22686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570  ax-mulf 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-om 6680  df-1st 6784  df-2nd 6785  df-tpos 6955  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7900  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-4 10595  df-5 10596  df-6 10597  df-7 10598  df-8 10599  df-9 10600  df-10 10601  df-n0 10795  df-z 10864  df-dec 10976  df-uz 11082  df-q 11182  df-rp 11220  df-ico 11534  df-fz 11672  df-fl 11896  df-mod 11964  df-seq 12075  df-exp 12134  df-struct 14491  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-starv 14569  df-tset 14573  df-ple 14574  df-ds 14576  df-unif 14577  df-0g 14696  df-mnd 15731  df-grp 15864  df-minusg 15865  df-subg 16000  df-cmn 16603  df-mgp 16941  df-ur 16953  df-rng 16997  df-cring 16998  df-oppr 17068  df-dvdsr 17086  df-unit 17087  df-invr 17117  df-dvr 17128  df-drng 17193  df-subrg 17222  df-abv 17261  df-cnfld 18208
This theorem is referenced by:  ostth2lem3  23564
  Copyright terms: Public domain W3C validator