![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ostth1 | Structured version Visualization version Unicode version |
Description: - Lemma for ostth 24556: trivial case. (Not that the proof is
trivial,
but that we are proving that the function is trivial.) If ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
qrng.q |
![]() ![]() ![]() ![]() ![]() ![]() |
qabsabv.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
padic.j |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ostth.k |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ostth.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ostth1.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ostth1.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ostth1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qrng.q |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | qabsabv.a |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ostth.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1 | qdrng 24537 |
. . 3
![]() ![]() ![]() ![]() |
5 | 1 | qrngbas 24536 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1 | qrng0 24538 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | ostth.k |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 2, 5, 6, 7 | abvtriv 18147 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 4, 8 | mp1i 13 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | ostth1.3 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 10 | r19.21bi 2776 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | prmnn 14704 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | ostth1.2 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 13 | r19.21bi 2776 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 12, 14 | sylan2 482 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | nnq 11300 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 12, 16 | syl 17 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 2, 5 | abvcl 18130 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 3, 17, 18 | syl2an 485 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 1re 9660 |
. . . . 5
![]() ![]() ![]() ![]() | |
21 | lttri3 9735 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
22 | 19, 20, 21 | sylancl 675 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 11, 15, 22 | mpbir2and 936 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 12 | adantl 473 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | eqeq1 2475 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
26 | 25 | ifbid 3894 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | c0ex 9655 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
28 | 1ex 9656 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
29 | 27, 28 | ifex 3940 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 26, 7, 29 | fvmpt 5963 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 16, 30 | syl 17 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | nnne0 10664 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
33 | 32 | neneqd 2648 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 33 | iffalsed 3883 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 31, 34 | eqtrd 2505 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 24, 35 | syl 17 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 23, 36 | eqtr4d 2508 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | 1, 2, 3, 9, 37 | ostthlem2 24545 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1677 ax-4 1690 ax-5 1766 ax-6 1813 ax-7 1859 ax-8 1906 ax-9 1913 ax-10 1932 ax-11 1937 ax-12 1950 ax-13 2104 ax-ext 2451 ax-rep 4508 ax-sep 4518 ax-nul 4527 ax-pow 4579 ax-pr 4639 ax-un 6602 ax-cnex 9613 ax-resscn 9614 ax-1cn 9615 ax-icn 9616 ax-addcl 9617 ax-addrcl 9618 ax-mulcl 9619 ax-mulrcl 9620 ax-mulcom 9621 ax-addass 9622 ax-mulass 9623 ax-distr 9624 ax-i2m1 9625 ax-1ne0 9626 ax-1rid 9627 ax-rnegex 9628 ax-rrecex 9629 ax-cnre 9630 ax-pre-lttri 9631 ax-pre-lttrn 9632 ax-pre-ltadd 9633 ax-pre-mulgt0 9634 ax-addf 9636 ax-mulf 9637 |
This theorem depends on definitions: df-bi 190 df-or 377 df-an 378 df-3or 1008 df-3an 1009 df-tru 1455 df-ex 1672 df-nf 1676 df-sb 1806 df-eu 2323 df-mo 2324 df-clab 2458 df-cleq 2464 df-clel 2467 df-nfc 2601 df-ne 2643 df-nel 2644 df-ral 2761 df-rex 2762 df-reu 2763 df-rmo 2764 df-rab 2765 df-v 3033 df-sbc 3256 df-csb 3350 df-dif 3393 df-un 3395 df-in 3397 df-ss 3404 df-pss 3406 df-nul 3723 df-if 3873 df-pw 3944 df-sn 3960 df-pr 3962 df-tp 3964 df-op 3966 df-uni 4191 df-int 4227 df-iun 4271 df-br 4396 df-opab 4455 df-mpt 4456 df-tr 4491 df-eprel 4750 df-id 4754 df-po 4760 df-so 4761 df-fr 4798 df-we 4800 df-xp 4845 df-rel 4846 df-cnv 4847 df-co 4848 df-dm 4849 df-rn 4850 df-res 4851 df-ima 4852 df-pred 5387 df-ord 5433 df-on 5434 df-lim 5435 df-suc 5436 df-iota 5553 df-fun 5591 df-fn 5592 df-f 5593 df-f1 5594 df-fo 5595 df-f1o 5596 df-fv 5597 df-riota 6270 df-ov 6311 df-oprab 6312 df-mpt2 6313 df-om 6712 df-1st 6812 df-2nd 6813 df-tpos 6991 df-wrecs 7046 df-recs 7108 df-rdg 7146 df-1o 7200 df-2o 7201 df-oadd 7204 df-er 7381 df-map 7492 df-en 7588 df-dom 7589 df-sdom 7590 df-fin 7591 df-pnf 9695 df-mnf 9696 df-xr 9697 df-ltxr 9698 df-le 9699 df-sub 9882 df-neg 9883 df-div 10292 df-nn 10632 df-2 10690 df-3 10691 df-4 10692 df-5 10693 df-6 10694 df-7 10695 df-8 10696 df-9 10697 df-10 10698 df-n0 10894 df-z 10962 df-dec 11075 df-uz 11183 df-q 11288 df-rp 11326 df-ico 11666 df-fz 11811 df-seq 12252 df-exp 12311 df-dvds 14383 df-prm 14702 df-struct 15201 df-ndx 15202 df-slot 15203 df-base 15204 df-sets 15205 df-ress 15206 df-plusg 15281 df-mulr 15282 df-starv 15283 df-tset 15287 df-ple 15288 df-ds 15290 df-unif 15291 df-0g 15418 df-mgm 16566 df-sgrp 16605 df-mnd 16615 df-grp 16751 df-minusg 16752 df-subg 16892 df-cmn 17510 df-mgp 17802 df-ur 17814 df-ring 17860 df-cring 17861 df-oppr 17929 df-dvdsr 17947 df-unit 17948 df-invr 17978 df-dvr 17989 df-drng 18055 df-subrg 18084 df-abv 18123 df-cnfld 19048 |
This theorem is referenced by: ostth 24556 |
Copyright terms: Public domain | W3C validator |