MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth Structured version   Unicode version

Theorem ostth 24022
Description: Ostrowski's theorem, which classifies all absolute values on  QQ. Any such absolute value must either be the trivial absolute value  K, a constant exponent  0  <  a  <_  1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
ostth.k  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
Assertion
Ref Expression
ostth  |-  ( F  e.  A  <->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^c 
a ) ) ) )
Distinct variable groups:    q, a, x, y    g, a, J, y    A, a, q, x, y    x, Q, y    F, a    g, q, F, y    x, F
Allowed substitution hints:    A( g)    Q( g, q, a)    J( x, q)    K( x, y, g, q, a)

Proof of Theorem ostth
Dummy variables  k  n  p  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qrng.q . . . . . 6  |-  Q  =  (flds  QQ )
2 qabsabv.a . . . . . 6  |-  A  =  (AbsVal `  Q )
3 padic.j . . . . . 6  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
4 ostth.k . . . . . 6  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
5 simpl 455 . . . . . 6  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  F  e.  A )
6 1re 9584 . . . . . . . . . . 11  |-  1  e.  RR
76ltnri 9682 . . . . . . . . . 10  |-  -.  1  <  1
8 ax-1ne0 9550 . . . . . . . . . . . 12  |-  1  =/=  0
91qrng1 24005 . . . . . . . . . . . . 13  |-  1  =  ( 1r `  Q )
101qrng0 24004 . . . . . . . . . . . . 13  |-  0  =  ( 0g `  Q )
112, 9, 10abv1z 17676 . . . . . . . . . . . 12  |-  ( ( F  e.  A  /\  1  =/=  0 )  -> 
( F `  1
)  =  1 )
128, 11mpan2 669 . . . . . . . . . . 11  |-  ( F  e.  A  ->  ( F `  1 )  =  1 )
1312breq2d 4451 . . . . . . . . . 10  |-  ( F  e.  A  ->  (
1  <  ( F `  1 )  <->  1  <  1 ) )
147, 13mtbiri 301 . . . . . . . . 9  |-  ( F  e.  A  ->  -.  1  <  ( F ` 
1 ) )
1514adantr 463 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  -.  1  <  ( F `  1
) )
16 simprr 755 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  1  <  ( F `  n ) )
17 fveq2 5848 . . . . . . . . . 10  |-  ( n  =  1  ->  ( F `  n )  =  ( F ` 
1 ) )
1817breq2d 4451 . . . . . . . . 9  |-  ( n  =  1  ->  (
1  <  ( F `  n )  <->  1  <  ( F `  1 ) ) )
1916, 18syl5ibcom 220 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  ( n  =  1  ->  1  <  ( F `  1
) ) )
2015, 19mtod 177 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  -.  n  =  1 )
21 simprl 754 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  n  e.  NN )
22 elnn1uz2 11159 . . . . . . . . 9  |-  ( n  e.  NN  <->  ( n  =  1  \/  n  e.  ( ZZ>= `  2 )
) )
2321, 22sylib 196 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  ( n  =  1  \/  n  e.  ( ZZ>= `  2 )
) )
2423ord 375 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  ( -.  n  =  1  ->  n  e.  ( ZZ>= `  2
) ) )
2520, 24mpd 15 . . . . . 6  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  n  e.  ( ZZ>= `  2 )
)
26 eqid 2454 . . . . . 6  |-  ( ( log `  ( F `
 n ) )  /  ( log `  n
) )  =  ( ( log `  ( F `  n )
)  /  ( log `  n ) )
271, 2, 3, 4, 5, 25, 16, 26ostth2 24020 . . . . 5  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^c  a ) ) )
2827rexlimdvaa 2947 . . . 4  |-  ( F  e.  A  ->  ( E. n  e.  NN  1  <  ( F `  n )  ->  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^c  a ) ) ) )
29 3mix2 1164 . . . 4  |-  ( E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^c 
a ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^c 
a ) ) ) )
3028, 29syl6 33 . . 3  |-  ( F  e.  A  ->  ( E. n  e.  NN  1  <  ( F `  n )  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^c  a ) ) ) ) )
31 ralnex 2900 . . . 4  |-  ( A. n  e.  NN  -.  1  <  ( F `  n )  <->  -.  E. n  e.  NN  1  <  ( F `  n )
)
32 simpll 751 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  F  e.  A )
33 simplr 753 . . . . . . . . . . 11  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  A. n  e.  NN  -.  1  < 
( F `  n
) )
34 fveq2 5848 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
3534breq2d 4451 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
1  <  ( F `  n )  <->  1  <  ( F `  k ) ) )
3635notbid 292 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( -.  1  <  ( F `
 n )  <->  -.  1  <  ( F `  k
) ) )
3736cbvralv 3081 . . . . . . . . . . 11  |-  ( A. n  e.  NN  -.  1  <  ( F `  n )  <->  A. k  e.  NN  -.  1  < 
( F `  k
) )
3833, 37sylib 196 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  A. k  e.  NN  -.  1  < 
( F `  k
) )
39 simprl 754 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  p  e.  Prime )
40 simprr 755 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  ( F `  p )  <  1 )
41 eqid 2454 . . . . . . . . . 10  |-  -u (
( log `  ( F `  p )
)  /  ( log `  p ) )  = 
-u ( ( log `  ( F `  p
) )  /  ( log `  p ) )
42 eqid 2454 . . . . . . . . . 10  |-  if ( ( F `  p
)  <_  ( F `  z ) ,  ( F `  z ) ,  ( F `  p ) )  =  if ( ( F `
 p )  <_ 
( F `  z
) ,  ( F `
 z ) ,  ( F `  p
) )
431, 2, 3, 4, 32, 38, 39, 40, 41, 42ostth3 24021 . . . . . . . . 9  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^c  a ) ) )
4443expr 613 . . . . . . . 8  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  p  e.  Prime )  ->  ( ( F `
 p )  <  1  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^c  a ) ) ) )
4544reximdva 2929 . . . . . . 7  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( E. p  e. 
Prime  ( F `  p
)  <  1  ->  E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^c  a ) ) ) )
461, 2, 3padicabvf 24014 . . . . . . . . . . 11  |-  J : Prime --> A
47 ffn 5713 . . . . . . . . . . 11  |-  ( J : Prime --> A  ->  J  Fn  Prime )
48 fveq1 5847 . . . . . . . . . . . . . . 15  |-  ( g  =  ( J `  p )  ->  (
g `  y )  =  ( ( J `
 p ) `  y ) )
4948oveq1d 6285 . . . . . . . . . . . . . 14  |-  ( g  =  ( J `  p )  ->  (
( g `  y
)  ^c  a )  =  ( ( ( J `  p
) `  y )  ^c  a )
)
5049mpteq2dv 4526 . . . . . . . . . . . . 13  |-  ( g  =  ( J `  p )  ->  (
y  e.  QQ  |->  ( ( g `  y
)  ^c  a ) )  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^c  a ) ) )
5150eqeq2d 2468 . . . . . . . . . . . 12  |-  ( g  =  ( J `  p )  ->  ( F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^c  a ) )  <-> 
F  =  ( y  e.  QQ  |->  ( ( ( J `  p
) `  y )  ^c  a )
) ) )
5251rexrn 6009 . . . . . . . . . . 11  |-  ( J  Fn  Prime  ->  ( E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^c  a ) )  <->  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^c  a ) ) ) )
5346, 47, 52mp2b 10 . . . . . . . . . 10  |-  ( E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^c  a ) )  <->  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^c  a ) ) )
5453rexbii 2956 . . . . . . . . 9  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^c 
a ) )  <->  E. a  e.  RR+  E. p  e. 
Prime  F  =  (
y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^c  a ) ) )
55 rexcom 3016 . . . . . . . . 9  |-  ( E. a  e.  RR+  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^c  a ) )  <->  E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^c  a ) ) )
5654, 55bitri 249 . . . . . . . 8  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^c 
a ) )  <->  E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^c  a ) ) )
57 3mix3 1165 . . . . . . . 8  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^c 
a ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^c 
a ) ) ) )
5856, 57sylbir 213 . . . . . . 7  |-  ( E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^c  a ) )  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^c  a ) ) ) )
5945, 58syl6 33 . . . . . 6  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( E. p  e. 
Prime  ( F `  p
)  <  1  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^c  a ) ) ) ) )
60 ralnex 2900 . . . . . . 7  |-  ( A. p  e.  Prime  -.  ( F `  p )  <  1  <->  -.  E. p  e.  Prime  ( F `  p )  <  1
)
61 simpl 455 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  F  e.  A )
62 simprl 754 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. n  e.  NN  -.  1  <  ( F `
 n ) )
6362, 37sylib 196 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. k  e.  NN  -.  1  <  ( F `
 k ) )
64 simprr 755 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. p  e.  Prime  -.  ( F `  p
)  <  1 )
65 fveq2 5848 . . . . . . . . . . . . . 14  |-  ( p  =  k  ->  ( F `  p )  =  ( F `  k ) )
6665breq1d 4449 . . . . . . . . . . . . 13  |-  ( p  =  k  ->  (
( F `  p
)  <  1  <->  ( F `  k )  <  1
) )
6766notbid 292 . . . . . . . . . . . 12  |-  ( p  =  k  ->  ( -.  ( F `  p
)  <  1  <->  -.  ( F `  k )  <  1 ) )
6867cbvralv 3081 . . . . . . . . . . 11  |-  ( A. p  e.  Prime  -.  ( F `  p )  <  1  <->  A. k  e.  Prime  -.  ( F `  k
)  <  1 )
6964, 68sylib 196 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. k  e.  Prime  -.  ( F `  k
)  <  1 )
701, 2, 3, 4, 61, 63, 69ostth1 24016 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  F  =  K )
71703mix1d 1169 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^c 
a ) ) ) )
7271expr 613 . . . . . . 7  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( A. p  e. 
Prime  -.  ( F `  p )  <  1  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^c 
a ) ) ) ) )
7360, 72syl5bir 218 . . . . . 6  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( -.  E. p  e.  Prime  ( F `  p )  <  1  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^c 
a ) ) ) ) )
7459, 73pm2.61d 158 . . . . 5  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^c 
a ) ) ) )
7574ex 432 . . . 4  |-  ( F  e.  A  ->  ( A. n  e.  NN  -.  1  <  ( F `
 n )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^c 
a ) ) ) ) )
7631, 75syl5bir 218 . . 3  |-  ( F  e.  A  ->  ( -.  E. n  e.  NN  1  <  ( F `  n )  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^c  a ) ) ) ) )
7730, 76pm2.61d 158 . 2  |-  ( F  e.  A  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^c  a ) ) ) )
78 id 22 . . . 4  |-  ( F  =  K  ->  F  =  K )
791qdrng 24003 . . . . 5  |-  Q  e.  DivRing
801qrngbas 24002 . . . . . 6  |-  QQ  =  ( Base `  Q )
812, 80, 10, 4abvtriv 17685 . . . . 5  |-  ( Q  e.  DivRing  ->  K  e.  A
)
8279, 81ax-mp 5 . . . 4  |-  K  e.  A
8378, 82syl6eqel 2550 . . 3  |-  ( F  =  K  ->  F  e.  A )
841, 2qabsabv 24012 . . . . . 6  |-  ( abs  |`  QQ )  e.  A
85 fvres 5862 . . . . . . . . . 10  |-  ( y  e.  QQ  ->  (
( abs  |`  QQ ) `
 y )  =  ( abs `  y
) )
8685oveq1d 6285 . . . . . . . . 9  |-  ( y  e.  QQ  ->  (
( ( abs  |`  QQ ) `
 y )  ^c  a )  =  ( ( abs `  y
)  ^c  a ) )
8786mpteq2ia 4521 . . . . . . . 8  |-  ( y  e.  QQ  |->  ( ( ( abs  |`  QQ ) `
 y )  ^c  a ) )  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^c 
a ) )
8887eqcomi 2467 . . . . . . 7  |-  ( y  e.  QQ  |->  ( ( abs `  y )  ^c  a ) )  =  ( y  e.  QQ  |->  ( ( ( abs  |`  QQ ) `
 y )  ^c  a ) )
892, 80, 88abvcxp 23998 . . . . . 6  |-  ( ( ( abs  |`  QQ )  e.  A  /\  a  e.  ( 0 (,] 1
) )  ->  (
y  e.  QQ  |->  ( ( abs `  y
)  ^c  a ) )  e.  A
)
9084, 89mpan 668 . . . . 5  |-  ( a  e.  ( 0 (,] 1 )  ->  (
y  e.  QQ  |->  ( ( abs `  y
)  ^c  a ) )  e.  A
)
91 eleq1 2526 . . . . 5  |-  ( F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^c 
a ) )  -> 
( F  e.  A  <->  ( y  e.  QQ  |->  ( ( abs `  y
)  ^c  a ) )  e.  A
) )
9290, 91syl5ibrcom 222 . . . 4  |-  ( a  e.  ( 0 (,] 1 )  ->  ( F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^c 
a ) )  ->  F  e.  A )
)
9392rexlimiv 2940 . . 3  |-  ( E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^c 
a ) )  ->  F  e.  A )
941, 2, 3padicabvcxp 24015 . . . . . . 7  |-  ( ( p  e.  Prime  /\  a  e.  RR+ )  ->  (
y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^c  a ) )  e.  A
)
9594ancoms 451 . . . . . 6  |-  ( ( a  e.  RR+  /\  p  e.  Prime )  ->  (
y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^c  a ) )  e.  A
)
96 eleq1 2526 . . . . . 6  |-  ( F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^c  a ) )  ->  ( F  e.  A  <->  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^c  a ) )  e.  A ) )
9795, 96syl5ibrcom 222 . . . . 5  |-  ( ( a  e.  RR+  /\  p  e.  Prime )  ->  ( F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^c  a ) )  ->  F  e.  A
) )
9897rexlimivv 2951 . . . 4  |-  ( E. a  e.  RR+  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^c  a ) )  ->  F  e.  A )
9954, 98sylbi 195 . . 3  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^c 
a ) )  ->  F  e.  A )
10083, 93, 993jaoi 1289 . 2  |-  ( ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^c  a ) ) )  ->  F  e.  A )
10177, 100impbii 188 1  |-  ( F  e.  A  <->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^c 
a ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    \/ wo 366    /\ wa 367    \/ w3o 970    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   ifcif 3929   class class class wbr 4439    |-> cmpt 4497   ran crn 4989    |` cres 4990    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270   0cc0 9481   1c1 9482    < clt 9617    <_ cle 9618   -ucneg 9797    / cdiv 10202   NNcn 10531   2c2 10581   ZZ>=cuz 11082   QQcq 11183   RR+crp 11221   (,]cioc 11533   ^cexp 12148   abscabs 13149   Primecprime 14301    pCnt cpc 14444   ↾s cress 14717   DivRingcdr 17591  AbsValcabv 17660  ℂfldccnfld 18615   logclog 23108    ^c ccxp 23109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-tpos 6947  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ioc 11537  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-mod 11979  df-seq 12090  df-exp 12149  df-fac 12336  df-bc 12363  df-hash 12388  df-shft 12982  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-limsup 13376  df-clim 13393  df-rlim 13394  df-sum 13591  df-ef 13885  df-sin 13887  df-cos 13888  df-pi 13890  df-dvds 14071  df-gcd 14229  df-prm 14302  df-pc 14445  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-hom 14808  df-cco 14809  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-pt 14934  df-prds 14937  df-xrs 14991  df-qtop 14996  df-imas 14997  df-xps 14999  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-grp 16256  df-minusg 16257  df-mulg 16259  df-subg 16397  df-cntz 16554  df-cmn 16999  df-mgp 17337  df-ur 17349  df-ring 17395  df-cring 17396  df-oppr 17467  df-dvdsr 17485  df-unit 17486  df-invr 17516  df-dvr 17527  df-drng 17593  df-subrg 17622  df-abv 17661  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-fbas 18611  df-fg 18612  df-cnfld 18616  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cld 19687  df-ntr 19688  df-cls 19689  df-nei 19766  df-lp 19804  df-perf 19805  df-cn 19895  df-cnp 19896  df-haus 19983  df-tx 20229  df-hmeo 20422  df-fil 20513  df-fm 20605  df-flim 20606  df-flf 20607  df-xms 20989  df-ms 20990  df-tms 20991  df-cncf 21548  df-limc 22436  df-dv 22437  df-log 23110  df-cxp 23111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator