Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ornglmulle Structured version   Unicode version

Theorem ornglmulle 26438
Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b  |-  B  =  ( Base `  R
)
ornglmullt.t  |-  .x.  =  ( .r `  R )
ornglmullt.0  |-  .0.  =  ( 0g `  R )
ornglmullt.1  |-  ( ph  ->  R  e. oRing )
ornglmullt.2  |-  ( ph  ->  X  e.  B )
ornglmullt.3  |-  ( ph  ->  Y  e.  B )
ornglmullt.4  |-  ( ph  ->  Z  e.  B )
orngmulle.l  |-  .<_  =  ( le `  R )
orngmulle.5  |-  ( ph  ->  X  .<_  Y )
orngmulle.6  |-  ( ph  ->  .0.  .<_  Z )
Assertion
Ref Expression
ornglmulle  |-  ( ph  ->  ( Z  .x.  X
)  .<_  ( Z  .x.  Y ) )

Proof of Theorem ornglmulle
StepHypRef Expression
1 ornglmullt.1 . . . . 5  |-  ( ph  ->  R  e. oRing )
2 orngogrp 26434 . . . . 5  |-  ( R  e. oRing  ->  R  e. oGrp )
31, 2syl 16 . . . 4  |-  ( ph  ->  R  e. oGrp )
4 isogrp 26330 . . . . 5  |-  ( R  e. oGrp 
<->  ( R  e.  Grp  /\  R  e. oMnd ) )
54simprbi 464 . . . 4  |-  ( R  e. oGrp  ->  R  e. oMnd )
63, 5syl 16 . . 3  |-  ( ph  ->  R  e. oMnd )
7 orngrng 26433 . . . . . 6  |-  ( R  e. oRing  ->  R  e.  Ring )
81, 7syl 16 . . . . 5  |-  ( ph  ->  R  e.  Ring )
9 rnggrp 16776 . . . . 5  |-  ( R  e.  Ring  ->  R  e. 
Grp )
108, 9syl 16 . . . 4  |-  ( ph  ->  R  e.  Grp )
11 ornglmullt.b . . . . 5  |-  B  =  ( Base `  R
)
12 ornglmullt.0 . . . . 5  |-  .0.  =  ( 0g `  R )
1311, 12grpidcl 15688 . . . 4  |-  ( R  e.  Grp  ->  .0.  e.  B )
1410, 13syl 16 . . 3  |-  ( ph  ->  .0.  e.  B )
15 ornglmullt.4 . . . . 5  |-  ( ph  ->  Z  e.  B )
16 ornglmullt.3 . . . . 5  |-  ( ph  ->  Y  e.  B )
17 ornglmullt.t . . . . . 6  |-  .x.  =  ( .r `  R )
1811, 17rngcl 16784 . . . . 5  |-  ( ( R  e.  Ring  /\  Z  e.  B  /\  Y  e.  B )  ->  ( Z  .x.  Y )  e.  B )
198, 15, 16, 18syl3anc 1219 . . . 4  |-  ( ph  ->  ( Z  .x.  Y
)  e.  B )
20 ornglmullt.2 . . . . 5  |-  ( ph  ->  X  e.  B )
2111, 17rngcl 16784 . . . . 5  |-  ( ( R  e.  Ring  /\  Z  e.  B  /\  X  e.  B )  ->  ( Z  .x.  X )  e.  B )
228, 15, 20, 21syl3anc 1219 . . . 4  |-  ( ph  ->  ( Z  .x.  X
)  e.  B )
23 eqid 2454 . . . . 5  |-  ( -g `  R )  =  (
-g `  R )
2411, 23grpsubcl 15728 . . . 4  |-  ( ( R  e.  Grp  /\  ( Z  .x.  Y )  e.  B  /\  ( Z  .x.  X )  e.  B )  ->  (
( Z  .x.  Y
) ( -g `  R
) ( Z  .x.  X ) )  e.  B )
2510, 19, 22, 24syl3anc 1219 . . 3  |-  ( ph  ->  ( ( Z  .x.  Y ) ( -g `  R ) ( Z 
.x.  X ) )  e.  B )
26 orngmulle.6 . . . . 5  |-  ( ph  ->  .0.  .<_  Z )
2711, 23grpsubcl 15728 . . . . . 6  |-  ( ( R  e.  Grp  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y ( -g `  R ) X )  e.  B )
2810, 16, 20, 27syl3anc 1219 . . . . 5  |-  ( ph  ->  ( Y ( -g `  R ) X )  e.  B )
2911, 12, 23grpsubid 15732 . . . . . . 7  |-  ( ( R  e.  Grp  /\  X  e.  B )  ->  ( X ( -g `  R ) X )  =  .0.  )
3010, 20, 29syl2anc 661 . . . . . 6  |-  ( ph  ->  ( X ( -g `  R ) X )  =  .0.  )
31 orngmulle.5 . . . . . . 7  |-  ( ph  ->  X  .<_  Y )
32 orngmulle.l . . . . . . . 8  |-  .<_  =  ( le `  R )
3311, 32, 23ogrpsub 26345 . . . . . . 7  |-  ( ( R  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  X  e.  B )  /\  X  .<_  Y )  ->  ( X (
-g `  R ) X )  .<_  ( Y ( -g `  R
) X ) )
343, 20, 16, 20, 31, 33syl131anc 1232 . . . . . 6  |-  ( ph  ->  ( X ( -g `  R ) X ) 
.<_  ( Y ( -g `  R ) X ) )
3530, 34eqbrtrrd 4425 . . . . 5  |-  ( ph  ->  .0.  .<_  ( Y (
-g `  R ) X ) )
3611, 32, 12, 17orngmul 26436 . . . . 5  |-  ( ( R  e. oRing  /\  ( Z  e.  B  /\  .0.  .<_  Z )  /\  ( ( Y (
-g `  R ) X )  e.  B  /\  .0.  .<_  ( Y (
-g `  R ) X ) ) )  ->  .0.  .<_  ( Z 
.x.  ( Y (
-g `  R ) X ) ) )
371, 15, 26, 28, 35, 36syl122anc 1228 . . . 4  |-  ( ph  ->  .0.  .<_  ( Z  .x.  ( Y ( -g `  R
) X ) ) )
3811, 17, 23, 8, 15, 16, 20rngsubdi 16816 . . . 4  |-  ( ph  ->  ( Z  .x.  ( Y ( -g `  R
) X ) )  =  ( ( Z 
.x.  Y ) (
-g `  R )
( Z  .x.  X
) ) )
3937, 38breqtrd 4427 . . 3  |-  ( ph  ->  .0.  .<_  ( ( Z 
.x.  Y ) (
-g `  R )
( Z  .x.  X
) ) )
40 eqid 2454 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
4111, 32, 40omndadd 26334 . . 3  |-  ( ( R  e. oMnd  /\  (  .0.  e.  B  /\  (
( Z  .x.  Y
) ( -g `  R
) ( Z  .x.  X ) )  e.  B  /\  ( Z 
.x.  X )  e.  B )  /\  .0.  .<_  ( ( Z  .x.  Y ) ( -g `  R ) ( Z 
.x.  X ) ) )  ->  (  .0.  ( +g  `  R ) ( Z  .x.  X
) )  .<_  ( ( ( Z  .x.  Y
) ( -g `  R
) ( Z  .x.  X ) ) ( +g  `  R ) ( Z  .x.  X
) ) )
426, 14, 25, 22, 39, 41syl131anc 1232 . 2  |-  ( ph  ->  (  .0.  ( +g  `  R ) ( Z 
.x.  X ) ) 
.<_  ( ( ( Z 
.x.  Y ) (
-g `  R )
( Z  .x.  X
) ) ( +g  `  R ) ( Z 
.x.  X ) ) )
4311, 40, 12grplid 15690 . . 3  |-  ( ( R  e.  Grp  /\  ( Z  .x.  X )  e.  B )  -> 
(  .0.  ( +g  `  R ) ( Z 
.x.  X ) )  =  ( Z  .x.  X ) )
4410, 22, 43syl2anc 661 . 2  |-  ( ph  ->  (  .0.  ( +g  `  R ) ( Z 
.x.  X ) )  =  ( Z  .x.  X ) )
4511, 40, 23grpnpcan 15739 . . 3  |-  ( ( R  e.  Grp  /\  ( Z  .x.  Y )  e.  B  /\  ( Z  .x.  X )  e.  B )  ->  (
( ( Z  .x.  Y ) ( -g `  R ) ( Z 
.x.  X ) ) ( +g  `  R
) ( Z  .x.  X ) )  =  ( Z  .x.  Y
) )
4610, 19, 22, 45syl3anc 1219 . 2  |-  ( ph  ->  ( ( ( Z 
.x.  Y ) (
-g `  R )
( Z  .x.  X
) ) ( +g  `  R ) ( Z 
.x.  X ) )  =  ( Z  .x.  Y ) )
4742, 44, 463brtr3d 4432 1  |-  ( ph  ->  ( Z  .x.  X
)  .<_  ( Z  .x.  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758   class class class wbr 4403   ` cfv 5529  (class class class)co 6203   Basecbs 14295   +g cplusg 14360   .rcmulr 14361   lecple 14367   0gc0g 14500   Grpcgrp 15532   -gcsg 15535   Ringcrg 16771  oMndcomnd 26325  oGrpcogrp 26326  oRingcorng 26428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-nn 10437  df-2 10494  df-ndx 14298  df-slot 14299  df-base 14300  df-sets 14301  df-plusg 14373  df-0g 14502  df-mnd 15537  df-grp 15667  df-minusg 15668  df-sbg 15669  df-mgp 16717  df-ur 16729  df-rng 16773  df-omnd 26327  df-ogrp 26328  df-orng 26430
This theorem is referenced by:  ornglmullt  26440
  Copyright terms: Public domain W3C validator