MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordzsl Structured version   Unicode version

Theorem ordzsl 6658
Description: An ordinal is zero, a successor ordinal, or a limit ordinal. (Contributed by NM, 1-Oct-2003.)
Assertion
Ref Expression
ordzsl  |-  ( Ord 
A  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A ) )
Distinct variable group:    x, A

Proof of Theorem ordzsl
StepHypRef Expression
1 orduninsuc 6656 . . . . . 6  |-  ( Ord 
A  ->  ( A  =  U. A  <->  -.  E. x  e.  On  A  =  suc  x ) )
21biimprd 223 . . . . 5  |-  ( Ord 
A  ->  ( -.  E. x  e.  On  A  =  suc  x  ->  A  =  U. A ) )
3 unizlim 4994 . . . . 5  |-  ( Ord 
A  ->  ( A  =  U. A  <->  ( A  =  (/)  \/  Lim  A
) ) )
42, 3sylibd 214 . . . 4  |-  ( Ord 
A  ->  ( -.  E. x  e.  On  A  =  suc  x  ->  ( A  =  (/)  \/  Lim  A ) ) )
54orrd 378 . . 3  |-  ( Ord 
A  ->  ( E. x  e.  On  A  =  suc  x  \/  ( A  =  (/)  \/  Lim  A ) ) )
6 3orass 976 . . . 4  |-  ( ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A )  <->  ( A  =  (/)  \/  ( E. x  e.  On  A  =  suc  x  \/  Lim  A ) ) )
7 or12 523 . . . 4  |-  ( ( A  =  (/)  \/  ( E. x  e.  On  A  =  suc  x  \/ 
Lim  A ) )  <-> 
( E. x  e.  On  A  =  suc  x  \/  ( A  =  (/)  \/  Lim  A
) ) )
86, 7bitri 249 . . 3  |-  ( ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A )  <->  ( E. x  e.  On  A  =  suc  x  \/  ( A  =  (/)  \/  Lim  A
) ) )
95, 8sylibr 212 . 2  |-  ( Ord 
A  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A ) )
10 ord0 4930 . . . 4  |-  Ord  (/)
11 ordeq 4885 . . . 4  |-  ( A  =  (/)  ->  ( Ord 
A  <->  Ord  (/) ) )
1210, 11mpbiri 233 . . 3  |-  ( A  =  (/)  ->  Ord  A
)
13 suceloni 6626 . . . . . 6  |-  ( x  e.  On  ->  suc  x  e.  On )
14 eleq1 2539 . . . . . 6  |-  ( A  =  suc  x  -> 
( A  e.  On  <->  suc  x  e.  On ) )
1513, 14syl5ibr 221 . . . . 5  |-  ( A  =  suc  x  -> 
( x  e.  On  ->  A  e.  On ) )
16 eloni 4888 . . . . 5  |-  ( A  e.  On  ->  Ord  A )
1715, 16syl6com 35 . . . 4  |-  ( x  e.  On  ->  ( A  =  suc  x  ->  Ord  A ) )
1817rexlimiv 2949 . . 3  |-  ( E. x  e.  On  A  =  suc  x  ->  Ord  A )
19 limord 4937 . . 3  |-  ( Lim 
A  ->  Ord  A )
2012, 18, 193jaoi 1291 . 2  |-  ( ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A )  ->  Ord  A )
219, 20impbii 188 1  |-  ( Ord 
A  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    \/ wo 368    \/ w3o 972    = wceq 1379    e. wcel 1767   E.wrex 2815   (/)c0 3785   U.cuni 4245   Ord word 4877   Oncon0 4878   Lim wlim 4879   suc csuc 4880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-tr 4541  df-eprel 4791  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884
This theorem is referenced by:  onzsl  6659  tfrlem16  7059  omeulem1  7228  oaabs2  7291  rankxplim3  8295  rankxpsuc  8296  cardlim  8349  cardaleph  8466  cflim2  8639  dfrdg2  28802
  Copyright terms: Public domain W3C validator