MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisuc2 Structured version   Unicode version

Theorem ordunisuc2 6663
Description: An ordinal equal to its union contains the successor of each of its members. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
ordunisuc2  |-  ( Ord 
A  ->  ( A  =  U. A  <->  A. x  e.  A  suc  x  e.  A ) )
Distinct variable group:    x, A

Proof of Theorem ordunisuc2
StepHypRef Expression
1 orduninsuc 6662 . 2  |-  ( Ord 
A  ->  ( A  =  U. A  <->  -.  E. x  e.  On  A  =  suc  x ) )
2 ralnex 2910 . . 3  |-  ( A. x  e.  On  -.  A  =  suc  x  <->  -.  E. x  e.  On  A  =  suc  x )
3 suceloni 6632 . . . . . . . . . 10  |-  ( x  e.  On  ->  suc  x  e.  On )
4 eloni 4888 . . . . . . . . . 10  |-  ( suc  x  e.  On  ->  Ord 
suc  x )
53, 4syl 16 . . . . . . . . 9  |-  ( x  e.  On  ->  Ord  suc  x )
6 ordtri3 4914 . . . . . . . . 9  |-  ( ( Ord  A  /\  Ord  suc  x )  ->  ( A  =  suc  x  <->  -.  ( A  e.  suc  x  \/ 
suc  x  e.  A
) ) )
75, 6sylan2 474 . . . . . . . 8  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  =  suc  x  <->  -.  ( A  e.  suc  x  \/ 
suc  x  e.  A
) ) )
87con2bid 329 . . . . . . 7  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( A  e.  suc  x  \/  suc  x  e.  A )  <->  -.  A  =  suc  x ) )
9 onnbtwn 4969 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  -.  ( x  e.  A  /\  A  e.  suc  x ) )
10 imnan 422 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  ->  -.  A  e.  suc  x )  <->  -.  (
x  e.  A  /\  A  e.  suc  x ) )
119, 10sylibr 212 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  (
x  e.  A  ->  -.  A  e.  suc  x ) )
1211con2d 115 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( A  e.  suc  x  ->  -.  x  e.  A
) )
13 pm2.21 108 . . . . . . . . . . 11  |-  ( -.  x  e.  A  -> 
( x  e.  A  ->  suc  x  e.  A
) )
1412, 13syl6 33 . . . . . . . . . 10  |-  ( x  e.  On  ->  ( A  e.  suc  x  -> 
( x  e.  A  ->  suc  x  e.  A
) ) )
1514adantl 466 . . . . . . . . 9  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  e.  suc  x  -> 
( x  e.  A  ->  suc  x  e.  A
) ) )
16 ax-1 6 . . . . . . . . . 10  |-  ( suc  x  e.  A  -> 
( x  e.  A  ->  suc  x  e.  A
) )
1716a1i 11 . . . . . . . . 9  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( suc  x  e.  A  -> 
( x  e.  A  ->  suc  x  e.  A
) ) )
1815, 17jaod 380 . . . . . . . 8  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( A  e.  suc  x  \/  suc  x  e.  A )  ->  (
x  e.  A  ->  suc  x  e.  A ) ) )
19 eloni 4888 . . . . . . . . . . . . . 14  |-  ( x  e.  On  ->  Ord  x )
20 ordtri2or 4973 . . . . . . . . . . . . . 14  |-  ( ( Ord  x  /\  Ord  A )  ->  ( x  e.  A  \/  A  C_  x ) )
2119, 20sylan 471 . . . . . . . . . . . . 13  |-  ( ( x  e.  On  /\  Ord  A )  ->  (
x  e.  A  \/  A  C_  x ) )
2221ancoms 453 . . . . . . . . . . . 12  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
x  e.  A  \/  A  C_  x ) )
2322orcomd 388 . . . . . . . . . . 11  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  C_  x  \/  x  e.  A ) )
2423adantr 465 . . . . . . . . . 10  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  ( A  C_  x  \/  x  e.  A ) )
25 ordsssuc2 4966 . . . . . . . . . . . . 13  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  C_  x  <->  A  e.  suc  x ) )
2625biimpd 207 . . . . . . . . . . . 12  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  C_  x  ->  A  e.  suc  x ) )
2726adantr 465 . . . . . . . . . . 11  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  ( A  C_  x  ->  A  e.  suc  x ) )
28 simpr 461 . . . . . . . . . . 11  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  (
x  e.  A  ->  suc  x  e.  A ) )
2927, 28orim12d 836 . . . . . . . . . 10  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  (
( A  C_  x  \/  x  e.  A
)  ->  ( A  e.  suc  x  \/  suc  x  e.  A )
) )
3024, 29mpd 15 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  ( A  e.  suc  x  \/ 
suc  x  e.  A
) )
3130ex 434 . . . . . . . 8  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( x  e.  A  ->  suc  x  e.  A
)  ->  ( A  e.  suc  x  \/  suc  x  e.  A )
) )
3218, 31impbid 191 . . . . . . 7  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( A  e.  suc  x  \/  suc  x  e.  A )  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
338, 32bitr3d 255 . . . . . 6  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( -.  A  =  suc  x 
<->  ( x  e.  A  ->  suc  x  e.  A
) ) )
3433pm5.74da 687 . . . . 5  |-  ( Ord 
A  ->  ( (
x  e.  On  ->  -.  A  =  suc  x
)  <->  ( x  e.  On  ->  ( x  e.  A  ->  suc  x  e.  A ) ) ) )
35 impexp 446 . . . . . 6  |-  ( ( ( x  e.  On  /\  x  e.  A )  ->  suc  x  e.  A )  <->  ( x  e.  On  ->  ( x  e.  A  ->  suc  x  e.  A ) ) )
36 simpr 461 . . . . . . . 8  |-  ( ( x  e.  On  /\  x  e.  A )  ->  x  e.  A )
37 ordelon 4902 . . . . . . . . . 10  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  e.  On )
3837ex 434 . . . . . . . . 9  |-  ( Ord 
A  ->  ( x  e.  A  ->  x  e.  On ) )
3938ancrd 554 . . . . . . . 8  |-  ( Ord 
A  ->  ( x  e.  A  ->  ( x  e.  On  /\  x  e.  A ) ) )
4036, 39impbid2 204 . . . . . . 7  |-  ( Ord 
A  ->  ( (
x  e.  On  /\  x  e.  A )  <->  x  e.  A ) )
4140imbi1d 317 . . . . . 6  |-  ( Ord 
A  ->  ( (
( x  e.  On  /\  x  e.  A )  ->  suc  x  e.  A )  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
4235, 41syl5bbr 259 . . . . 5  |-  ( Ord 
A  ->  ( (
x  e.  On  ->  ( x  e.  A  ->  suc  x  e.  A ) )  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
4334, 42bitrd 253 . . . 4  |-  ( Ord 
A  ->  ( (
x  e.  On  ->  -.  A  =  suc  x
)  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
4443ralbidv2 2899 . . 3  |-  ( Ord 
A  ->  ( A. x  e.  On  -.  A  =  suc  x  <->  A. x  e.  A  suc  x  e.  A ) )
452, 44syl5bbr 259 . 2  |-  ( Ord 
A  ->  ( -.  E. x  e.  On  A  =  suc  x  <->  A. x  e.  A  suc  x  e.  A ) )
461, 45bitrd 253 1  |-  ( Ord 
A  ->  ( A  =  U. A  <->  A. x  e.  A  suc  x  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   U.cuni 4245   Ord word 4877   Oncon0 4878   suc csuc 4880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-tr 4541  df-eprel 4791  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-suc 4884
This theorem is referenced by:  dflim4  6667  limsuc2  30618
  Copyright terms: Public domain W3C validator