MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisssuc Structured version   Unicode version

Theorem ordunisssuc 4986
Description: A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordunisssuc  |-  ( ( A  C_  On  /\  Ord  B )  ->  ( U. A  C_  B  <->  A  C_  suc  B ) )

Proof of Theorem ordunisssuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssel2 3504 . . . . 5  |-  ( ( A  C_  On  /\  x  e.  A )  ->  x  e.  On )
2 ordsssuc 4970 . . . . 5  |-  ( ( x  e.  On  /\  Ord  B )  ->  (
x  C_  B  <->  x  e.  suc  B ) )
31, 2sylan 471 . . . 4  |-  ( ( ( A  C_  On  /\  x  e.  A )  /\  Ord  B )  ->  ( x  C_  B 
<->  x  e.  suc  B
) )
43an32s 802 . . 3  |-  ( ( ( A  C_  On  /\ 
Ord  B )  /\  x  e.  A )  ->  ( x  C_  B  <->  x  e.  suc  B ) )
54ralbidva 2903 . 2  |-  ( ( A  C_  On  /\  Ord  B )  ->  ( A. x  e.  A  x  C_  B  <->  A. x  e.  A  x  e.  suc  B ) )
6 unissb 4283 . 2  |-  ( U. A  C_  B  <->  A. x  e.  A  x  C_  B
)
7 dfss3 3499 . 2  |-  ( A 
C_  suc  B  <->  A. x  e.  A  x  e.  suc  B )
85, 6, 73bitr4g 288 1  |-  ( ( A  C_  On  /\  Ord  B )  ->  ( U. A  C_  B  <->  A  C_  suc  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1767   A.wral 2817    C_ wss 3481   U.cuni 4251   Ord word 4883   Oncon0 4884   suc csuc 4886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-tr 4547  df-eprel 4797  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-suc 4890
This theorem is referenced by:  ordsucuniel  6654  onsucuni  6658  isfinite2  7790  rankbnd2  8299
  Copyright terms: Public domain W3C validator